Citation: Zhen Song, Lingjun Han, Yajie Wang, Binsheng Yang. Study on Hydrophobic Interaction of Resveratrol with CopC by Spectroscopic and Docking Methods[J]. Chemistry, ;2021, 84(4): 388-393. shu

Study on Hydrophobic Interaction of Resveratrol with CopC by Spectroscopic and Docking Methods

  • Corresponding author: Zhen Song, songzhen@tynu.edu.cn
  • Received Date: 10 October 2020
    Accepted Date: 9 November 2020

Figures(9)

  • Resveratrol, a natural phytoalexin as well as a type of polyphenolic compound, exists in peanuts, wines, grapes and different berries. CopC is a redox switch for modulating copper, and its interaction with small molecules affects the switching function. This work focuses on investigating the resveratrol-CopC interaction using FTIR, CD, fluorescence lifetime, three-dimensional (3D) fluorescence spectroscopy, fluorescence spectroscopic and molecular docking. As revealed by the FTIR, CD and fluorescence lifetime assays, the combination of resveratrol changed the conformation of CopC. The results suggested that the content of β-sheet decreased, and the content of random coil increased. The 3D fluorescence spectroscopy and molecular docking studies showed that after resveratrol is combined with CopC, the fluorescence spectrum appears blue shift, indicating that resveratrol may be bound to the hydrophobic region of CopC. Also, as demonstrated by the fluorescence quenching data, resveratrol and CopC present a binding ratio of 1∶1, and the obtained binding constant is (6.76±0.17)×105 L·mol-1. Based on thermodynamic parameters, CopC-resveratrol complex is formed under the impact of hydrophobic force. What's more, Förster non-radioactive resonance energy transfer together with molecular docking were used to determine the average binding distance between the resveratrol and the tryptophan in CopC. The simulation results are in good agreement with the experimental results. This study will provide help to clarify the copper regulation mechanism of CopC.
  • 加载中
    1. [1]

      Nair M S. J. Photoch. Photobio. B, 2015, 149: 58~67. 

    2. [2]

      Liang L, Tajmir-Riahi H A, Subirade M. Biomacromolecules, 2008, 9(1): 50~56. 

    3. [3]

      Bourassa P, Kanakis C D, Tarantilis P, et al. J. Phys. Chem. B, 2010, 114(9): 3348~3354. 

    4. [4]

      Stervbo U, Vang O, Bonnesen C. Food Chem., 2007, 101(2): 449~457. 

    5. [5]

      Nutakul W, Sobers H S, Qiu P, et al. J. Agr. Food Chem., 2011, 59(20): 10964~10970. 

    6. [6]

      Wang P, Sang S. Biofactors, 2018, 44(1): 3348~3354.

    7. [7]

      Chiavarino B, Crestoni M, Fornarini S, et al. J. Chem. Phys., 2012, 137: 024307. 

    8. [8]

      Delmas D, Aires V, Limagne E, et al. Ann. NY Acad. Sci., 2011, 1215: 48~59. 

    9. [9]

      Shortridge M D, Bokemper M, Copeland J C, et al. J. Proteome. Res., 2011, 10(5): 2538~2545. 

    10. [10]

      Wolf F A D, Brett G M. Pharmacol. Rev., 2000, 52(2): 207~236.

    11. [11]

      Tavares G M, Croguennec T, Carvalho A F, et al. Trends Food Sci. Tech., 2014, 37(1): 5~20. 

    12. [12]

      Barceloux D G, Barceloux D. J. Toxicol-Clin Toxic., 1999, 37(2): 217~230. 

    13. [13]

      Elam J S, Thomas S T, Holloway S P, et al. Adv. Protein Chem., 2002, 60(1): 151.

    14. [14]

      Field L S, Luk E, Culotta V C. J. Bioenerg. Biomembr., 2002, 34(5): 373~379. 

    15. [15]

      Arnesano F, Banci L, Bertini I, et al. PNAS, 2003, 100(7): 3814~3819. 

    16. [16]

      Arnesano F, Banci L, Bertini I, et al. Structure, 2002, 10(10): 1337~1347. 

    17. [17]

      Zheng X Y, Pang E G, Zhao Y Q, et al. Supramol. Chem., 2008, 20(6): 553~557. 

    18. [18]

      Song Z, Yuan W, Zhu R, et al. Int. J. Biol. Macromol., 2017, 96: 192~199. 

    19. [19]

      Wang J, Luo C, Shan C, et al. Nat. Chem., 2015, 7(12): 968~979. 

    20. [20]

      Pang E, Zhao Y, Yang B. Chin. Sci. Bull., 2005, 50(20): 2302~2305. 

    21. [21]

      Demirdöven N, Cheatum C M, Chung H S, et al. J. Am. Chem. Soc., 2004, 126(25): 7981~7990. 

    22. [22]

      Rapaport H, Kjaer K, Jensen T R, et al. J. Am. Chem. Soc., 2000, 122(50): 12523~12529. 

    23. [23]

      Mandeville J S, Froehlich E, Tajmir-Riahi H A. J. Pharmaceut. Biomed., 2009, 49(2): 468~474. 

    24. [24]

      Gao M, Zhang S Y, Liu Y, et al. Food Chem. Toxicol., 2015, 78: 42~51. 

    25. [25]

      Ross P D, Subramanian S. Biochemistry, 1981, 20(11): 3096~3102. 

  • 加载中
    1. [1]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    2. [2]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    3. [3]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    4. [4]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    5. [5]

      Zehua ZhangHaitao YuYanyu Qi . Design Strategy for Thermally Activated Delayed Fluorescence Materials with Multiple Resonance Effect. Acta Physico-Chimica Sinica, 2025, 41(1): 100006-0. doi: 10.3866/PKU.WHXB202309042

    6. [6]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    7. [7]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    8. [8]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    9. [9]

      Jiming XIYukang TENGRui ZHANGZhenzhong LU . Fluorescent coordination polymers based on anthracene-and pyrene-derivative ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 847-854. doi: 10.11862/CJIC.20240367

    10. [10]

      Yuanyu YANGJianhua XUEYujia BAILulu CUIDongdong YANGQi MA . Design, synthesis, and detection of Al3+ of two zinc complexes based on Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1207-1216. doi: 10.11862/CJIC.20250005

    11. [11]

      Yanfen PENGXinyue WANGTianbao LIUXiaoshuo WUYujing WEI . Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1416-1426. doi: 10.11862/CJIC.20250018

    12. [12]

      Youbo HUDonggang LIChanghua SUNZhenzhong LUSongjun GU . Coordination polymers based on anthracene- and pyrene-derived ligands: Crystal structure, fluorescent property, and framework isomerization. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1681-1688. doi: 10.11862/CJIC.20250004

    13. [13]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    14. [14]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    15. [15]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    16. [16]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    17. [17]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    18. [18]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    19. [19]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    20. [20]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

Metrics
  • PDF Downloads(10)
  • Abstract views(1103)
  • HTML views(265)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return