Citation: Wang Linqing, Yang Dongxu, Wang Rui. The in-situ Magnesium Catalysts Generated by Mono-Active Hydrogen Containing Ligands and their Applications in Asymmetric Synthesis[J]. Chemistry, ;2020, 83(3): 209-217. shu

The in-situ Magnesium Catalysts Generated by Mono-Active Hydrogen Containing Ligands and their Applications in Asymmetric Synthesis

  • Corresponding author: Yang Dongxu, yangdx@lzu.edu.cn
  • Received Date: 12 October 2019
    Accepted Date: 23 November 2019

Figures(18)

  • This review summarized the recent works on in-situ generated magnesium catalysts, especially for the systematic induction and category of in-situ magnesium catalysts generated from mono-active hydrogen containing ligands. We try to introduce the design and development of chiral ligands with mono-nitrogen-hydrogen bond, mono-phenol and mono-alcohol, and the related applications in in-situ generated magnesium catalysts, for realizing multi-types of asymmetric catalyzed transformations and the ways of chemical bonds formation. Further exploration of the strategy of in-situ generated magnesium catalysis would be beneficial to study and expand more types of chemical transformations mediated by cheap and low pollution metal resources.
  • 加载中
    1. [1]

      Zhou Q L.. Privileged Chiral Ligands and Catalysts. Wiley-VCH, 2011.

    2. [2]

      Trost B M, Crawley M L.. Chem. Rev., 2003, 103(8):2921-2944. 

    3. [3]

      Shibasaki M, Kanai M.. Chem. Rev., 2008, 108(8):2853-2873. 

    4. [4]

      Zhang Z F, Butt N A, Zhang W B.. Chem. Rev., 2016, 116(23):14769-14827. 

    5. [5]

      Zheng K, Liu X H, Feng X M.. Chem. Rev., 2018, 118(16):7586-7656. 

    6. [6]

      Cheng Q, Tu H F, Zheng C, et al.. Chem. Rev., 2019, 119(3):1855-1969. 

    7. [7]

      Yang D X, Wang L Q, Li D, et al.. Chem, 2019, 5(5):1108-1166. 

    8. [8]

      Pellissier H.. Org. Biomol. Chem., 2017, 15:4750-4782. 

    9. [9]

      Yoshino T, Morimoto H, Lu G, et al.. J. Am. Chem. Soc., 2009, 131(47):17082-17083. 

    10. [10]

      Lu G, Yoshino T, Morimoto H, et al.. Angew. Chem. Int. Ed., 2011, 50(19):4382-4385. 

    11. [11]

      Hatano M, Horibe T, Ishihara K, et al.. Org. Lett., 2010, 12(15):3502-3505. 

    12. [12]

      Wang L Q, Yang D X, Li D, et al.. Org. Lett., 2015, 17(12):3004-3007. 

    13. [13]

      Wang L Q, Li D, Yang D X, et al.. Chem. Asian. J., 2016, 11(5):691-695. 

    14. [14]

      Li D, Wang L Q, Yang D X, et al.. Catal ACS., 2015, 5(12):7432-7436. 

    15. [15]

      Li D, Wang Y J, Wang L Q, et al.. Chem. Commun., 2016, 52(62):9640-9643. 

    16. [16]

      Lin L, Zhang J L, Ma X J, et al.. Org. Lett., 2011, 13(24):6410-6413. 

    17. [17]

      Yang D X, Wang L Q, Han F X, et al.. Angew. Chem. Int. Ed., 2013, 52(26):6739-6742. 

    18. [18]

      Du H F, Zhang X, Wang Z, et al.. Eur. J. Org. Chem., 2008, (13):2248-2254.

    19. [19]

      Bao H L, Wu J, Li H J, et al.. Eur. J. Org. Chem., 2010, (35):6722-6726.

    20. [20]

      Li D, Wang K Z, Wang L Q, et al.. Org. Lett., 2017, 19(12):3211-3214. 

    21. [21]

      Zhang J L, Liu X H, Wang R.. Chem. Eur. J., 2014, 20(17):4911-4915. 

    22. [22]

      Fujisawa T, Ichiyanagi T, Shimizu M.. Tetrahed. Lett., 1995, 36(28):5031-5034. 

    23. [23]

      Hatano M, Horibe T, Ishihara K.. Angew. Chem. Int. Ed., 2013, 52(17):4549-4553. 

    24. [24]

      Hatano M, Horibe T, Yamashita K, et al.. Asian. J. Org. Chem., 2013, 2(11):952-956. 

    25. [25]

      Wang L Q, Yang D X, Li D, et al.. Angew. Chem. Int. Ed., 2018, 57(29):9088-9092. 

    26. [26]

      Hatano M, Nishikawa K, Ishihara K.. J. Am. Chem. Soc., 2017, 139(25):8424-8427. 

    27. [27]

      Evans D A, Nelson S G.. J. Am. Chem. Soc. 1997, 119(27):6452-6453.

    28. [28]

      Elston C L, Jackson R F W, Mac Donald S J F, et al.. Angew. Chem. Int. Ed., 1997, 36(4):410-412. 

    29. [29]

      Jacques O, Richardsb S J, Jackson R F W.. Chem. Commun., 2001, 24:2712-2713.

    30. [30]

      Noyori R, Suga S, Kawai K, et al.. Pure Appl. Chem., 1988, 60(11):1597-1606. 

    31. [31]

      Yong K H, Taylor N J, Chong J M.. Org. Lett., 2002, 4(23):3553-3556.

    32. [32]

      Yong K H, Chong J M.. Org. Lett., 2002, 4(23):4139-4142. 

    33. [33]

      Anderson J D, García G P G, Hayes D, et al.. Tetrahed. Lett., 2001, 42:7111-7114. 

    34. [34]

      Henderson K W, Kerr W J, Moir J H.. Chem. Commun., 2000, 6:479-480.

    35. [35]

      Henderson K W, Kerr W J, Moir J H.. Tetrahedron, 2002, 58:4573-4587. 

    36. [36]

      Carswell E L, Hayes D, Henderson K W, et al.. Synlett, 2003, 34:1017-1021.

    37. [37]

      Carswell E L, Kerr W J, McArthur D, et al.. Tetrahedron, 2014, 70:7344-7349. 

    38. [38]

      Yang D X, Wang L Q, Han F X, et al.. Angew. Chem. Int. Ed., 2015, 54(7):2185-2189. 

    39. [39]

      Wang L Q, Yang D X, Li D, et al Adv.. Synth. Catal., 2018, 360(23):4491-4496. 

    40. [40]

      Yang D X, Wang L Q, Kai M, et al.. Angew. Chem. Int. Ed., 2015, 54(33):9523-9527. 

    41. [41]

      Wang L Q, Yang D X, Li D, et al.. Chem. Eur. J., 2016, 22(25):8483-8487. 

    42. [42]

      Galliford C V, Scheidt K A.. Angew. Chem. Int. Ed., 2007, 46(46):8748-8758. 

    43. [43]

      Yu J, Shi F, Gong L.. Acc. Chem. Res., 2011, 44(11):1156-1171. 

    44. [44]

      Dalpozzo R, Bartoli G, Bencivenni G.. Chem. Soc. Rev., 2012, 41(21):7247-7290. 

    45. [45]

      Kotha S, Panguluri N R, Ali R.. Eur. J. Org. Chem., 2017, (36):5316-5342.

    46. [46]

      Wang L Q, Yang D X, Li D, et al.. Org. Lett., 2015, 17(17):4260-4263. 

    47. [47]

      Wang K Z, Wang L Q, Liu X H, et al.. Org. Lett., 2017, 19(16):4351-4354. 

    48. [48]

      Li D, Yang D X, Wang L Q, et al.. Chem. Eur. J., 2016, 22(48):17141-17144. 

    49. [49]

      Li D, Wang L Q, Zhu H Y, et al.. Org. Lett., 2019, 21(12):4717-4720. 

    50. [50]

      Zhang X M, Emge T J, Hultzsch K C.. Angew. Chem. Int. Ed., 2012, 51(2):394-398. 

    51. [51]

      Zhang M, Tobisch S, Hultzsch K C.. Chem. Eur. J., 2015, 21(21):7841-7857. 

    52. [52]

      Jackowski O, Alexakis A.. Angew. Chem. Int. Ed., 2010, 49(19):3346-3350. 

    53. [53]

      Grassi D, Alexakis A.. Angew. Chem. Int. Ed., 2013, 52(51):13642-13646. 

    54. [54]

      Grassi D, Dolka C, Jackowski O, et al.. Chem. Eur. J., 2013, 19(4):1466-1475. 

    55. [55]

      Yang D X, Wang L Q, Han F X, et al.. Chem. Eur. J., 2014, 20(50):16478-16483. 

    56. [56]

      Wang L Q, Yang D X, Han F X, et al.. Org. Lett., 2015, 17(2):176-179. 

    57. [57]

      Yang D X, Wang L Q, Han F X, et al.. Chem. Eur. J., 2014, 20(28):8584-8588. 

    58. [58]

      Li D, Wang L Q, Yang Y L.. Adv. Synth. Catal., 2019, 361(16):3744-3750. 

  • 加载中
    1. [1]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    2. [2]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    3. [3]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    4. [4]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    5. [5]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    6. [6]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    7. [7]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    8. [8]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    9. [9]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    10. [10]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    11. [11]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    12. [12]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    13. [13]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    14. [14]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    17. [17]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    18. [18]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    19. [19]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    20. [20]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

Metrics
  • PDF Downloads(10)
  • Abstract views(2310)
  • HTML views(448)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return