Citation: Wu Jing, Shi Mengjie, Kuang Shumin, Wu Juan, Lin Wei, Zhang Manying, He Xianghong, Liang Guobing. Green Preparation of Cu2O/Ag Nanocomposite and Its Antibacterial Properties[J]. Chemistry, ;2019, 82(8): 749-753. shu

Green Preparation of Cu2O/Ag Nanocomposite and Its Antibacterial Properties

Figures(6)

  • The Cu2O/Ag composites were prepared environmentally and conveniently by using copper acetate as the copper source, silver nitrate as the silver source and natural honey as the reducing agents without any high pressure reactor and template. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the structure and morphology of as-prepared Cu2O/Ag composites. It is proved by the inhibition zone method that the Cu2O/Ag composite has better antibacterial activity against E. coli than Cu2O. By analyzing the effect of Cu2O/Ag on the growth process of E. coli, it was found that the Cu2O/Ag composites could completely inhibit the growth of E. coli when the concentration of Cu2O/Ag composites was 10μg/mL. The changes of the morphology of E. coli during the process of adding Cu2O/Ag composites were observed by SEM. The antibacterial effect of Cu2O/Ag composites on E. coli is to destroy the cell membrane structure and break the bacteria into small segments. These small segments gradually shrink and are completely decomposed into macromolecular substances. All of these results indicated that the Cu2O/Ag composites have potential practical application value in the field of antibacterial agents.
  • 加载中
    1. [1]

       

    2. [2]

       

    3. [3]

       

    4. [4]

      N A Sabri, H Schmitt, D Zaan et al. J. Environ. Chem. Eng., 2018:S2213343718301258.

    5. [5]

      Q Tang, W Wu, B Zhang et al. J. Inorg. Org. Polym. Mater., 2019:1~6.

    6. [6]

      G Tian, Y Chen, H L Bao et al. J. Mater. Chem., 2012, 22(5):2081~2088. 

    7. [7]

      H M Wei, H B Gong, L Chen et al. J. Phys. Chem. C, 2012, 116(19):10510~10515. 

    8. [8]

      S Deng, V Tjoa, H M Fan et al. J. Am. Chem. Soc., 2012, 134(10):4905~4917. 

    9. [9]

      S K Li, X Guo, Y Wang et al. Dalton Transac., 2011, 40(25):6745~6750. 

    10. [10]

       

    11. [11]

      W Zhao, W Fu, H Yang et al. Appl. Surf. Sci., 2010, 256(7):2269~2275. 

    12. [12]

      G Jimenez, E Comini, M Ferroni et al. Mater. Lett., 2010, 64(3):469~471. 

    13. [13]

      M Pang, H C Zeng. Langmuir, 2010, 26(8):5963~5970. 

    14. [14]

      K Sunada, M Minoshima, K Hashimoto. J. Hazard. Mater., 2012, 235~236:265~270. 

    15. [15]

      B Li, Y Li, Y Zhao et al. J. Phys. Chem. Solids, 2013, 74(12):1842~1847. 

    16. [16]

    17. [17]

       

    18. [18]

       

    19. [19]

      T H Le, T T Le, T V Son et al. J. Electron. Mater., 2017, 46(6):1~10.

    20. [20]

      H H A Sherif, S K H Khalil, A G Hegazi et al. IET Nanobiotechnology, 2017, 11(6):731~737. 

    21. [21]

      D A Mosselhy, H Granbohm, U Hynönen et al. Nanomaterials, 2017, 7(9):261~263. 

    22. [22]

      Y H Hsueh, K S Lin, W J Ke et al. PloS One, 2015, 10(12):e0144306. 

    23. [23]

      M Sedki, M B Mohamed, M Fawzy et al. RSC Adv., 2015, 5(22):17358~17365. 

    24. [24]

      M L Kung, M H Tai, P Y Lin et al. Colloid. Surf. B, 2017, 155:399~407. 

    25. [25]

      X Deng, C Wang, E Zhou et al. Nanoscale Res. Lett., 2016, 11(1):29. 

    26. [26]

      S Tao, M Yang, H Chen et al. J. Colloid Interf. Sci., 2017, 486:16~26. 

    27. [27]

      S Kandula, P Jeevanandam. Eur. J. Inorg. Chem., 2016, 2016(10):1548~1557. 

    28. [28]

      L H Fu, F Deng, M G Ma et al. RSC Adv., 2016, 6(34):28140~28148. 

    29. [29]

      H Luo, J Zhou, H Zhong et al. RSC Adv., 2016, 6, 99105~991133. 

    30. [30]

      P Mao, Y Liu, Y Jiao et al. Chemosphere, 2016, 164:396~403. 

  • 加载中
    1. [1]

      Jingjie Tang Luying Xie Jiayu Liu Shangyu Shi Xinyu Sun Jiayang Lin Qikun Yang Chuan'ang Yu Zecheng Wang Yingying Wang Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091

    2. [2]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    3. [3]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    4. [4]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    5. [5]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    6. [6]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    7. [7]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    8. [8]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    9. [9]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    10. [10]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    11. [11]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    12. [12]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    13. [13]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    14. [14]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    15. [15]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    16. [16]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    17. [17]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    18. [18]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    19. [19]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    20. [20]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

Metrics
  • PDF Downloads(9)
  • Abstract views(1800)
  • HTML views(750)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return