Citation: HE Kai-qiang, SHI Meng-dan, LI Yan, JIANG Yang-hong, LI Yuan-peng, YUAN Chun-gang. Speciation analysis of arsenic in coal and its combustion by-products in coal-fired power plants[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(11): 1310-1317. shu

Speciation analysis of arsenic in coal and its combustion by-products in coal-fired power plants

  • Corresponding author: YUAN Chun-gang, cgyuan@ncepu.edu.cn
  • Received Date: 10 September 2020
    Revised Date: 21 September 2020

    Fund Project: the National Key R & D Program of China 2018YFB0605101The project was supported by the National Key R & D Program of China (2018YFB0605101) and the Fundamental Research Funds for the Central Universities (2018QN088)the Fundamental Research Funds for the Central Universities 2018QN088

Figures(6)

  • The speciations of Arsenic (As) in coal will inevitably convert during the combustion process. The As speciations in coal and its by-products are closely related to human health and environmental safety which is urgent to be identified. However, there is a lack of pretreatment procedure and analysis method on the As species in coal-related products in power plants. In this study, the As species in coal, fly ash (FA), and gypsum were successfully determined by high performance liquid chromatography coupled with hydride generation atomic fluorescence spectrometry (HPLC-HG-AFS). The instrument parameters, extract reagents, and pretreatment methods (i.e. ultrasound and microwave-assisted) were optimized. The whole separation time of inorganic As was shorten to 7 min after optimization, with the detection limit of 1.8 and 4.6 ng/g for As(Ⅲ) and As(Ⅴ), respectively. The efficient As extract reagent was the mixture of 1.0 mol/L H3PO4 and 0.1 mol/L ascorbic acid solution. Microwave-assisted (2000 W, 80 ℃, 40 min) and ultrasound-assisted (40 kHz, 20 ℃, 40 min) schemes were the optimal extraction methods for coal/FA and gypsum samples, respectively. Under the proposed microwave and ultrasound extraction procedure, the recovery of As(Ⅲ) and As(Ⅴ) could reach to 95.8%/104.5% and 90.6%/89.7%, respectively. The dominant occurrence of As species in coal was As(Ⅴ) with a small percentage of As(Ⅲ), while As(Ⅴ) was the only occurrence form observed in FA and gypsum. It is indicated that revealing the transformation of As(Ⅲ) to As(Ⅴ) is the key for gaseous As capture. The As species distribution investigation provides a scientific insight to the controlling of As emission from power plant.
  • 加载中
    1. [1]

      ZHAO Y C, YANG J P, MA S M, ZHANG S B, LIU H, GONG B G, ZHANG J Y, ZHENG C G. Emission controls of mercury and other trace elements during coal combustion in China:A review[J]. Int Geol Rev, 2018,60:638-670.  

    2. [2]

      LUO G Q, YU Q, MA J, J , ZHANG B, XIAO L, LUO J, ZHOU T, WANG Y, XU M H, YAO H. Pilot-scale study of volatilization behavior of Hg, Se, As, Cl, S during decoupled conversion of coal[J]. Fuel, 2013,112:704-709.  

    3. [3]

      HE K Q, YUAN C G, SHI M D, JIANG Y H. Accelerated screening of arsenic and selenium fractions and bioavailability in fly ash by microwave assistance[J]. Ecotox Environ Safe, 2020,187109820.  

    4. [4]

      XU H, ZHANG C, YUAN C L, YU S H, LI Q, FANG Q Y, CHEN G. Study on arsenic adsorption characteristics by mineral elements in simulated flue gas atmosphere[J]. J Fuel Chem Technol, 2019,47(7):876-883.  

    5. [5]

      QIN Y Q, CHEN X L, CHEN H D, LIU H F. Effects of adding CaO on the release and transformation of arsenic and sulfur during coal pyrolysis[J]. J Fuel Chem Technol, 2017,45(2):147-156.  

    6. [6]

      DONG J L, GENG X, GAO Z Y, LIU Y F. Adsorption mechanism of trace As on the defect sites of SiO2 in fly ash[J]. J Fuel Chem Technol, 2018,46:1401-1408.

    7. [7]

      LIU H, ZHAO Y C, ZHOU Y M, CHANG L, ZHANG J Y. Removal of gaseous elemental mercury by modified diatomite[J]. Sci Total Environ, 2018,652:651-659.  

    8. [8]

      XIE J J, YUAN C G, XIE J, SHEN Y W, HE K Q, ZHANG K G. Speciation and bioaccessibility of heavy metals in PM2.5 in Baoding city, China[J]. Environ Pollut, 2019,252:336-343.  

    9. [9]

      REID M S, HOY K S, SCHOFIELD J R M, UPPAL J S, LE X C. Arsenic speciation analysis:A review with an emphasis on chromatographic separations[J]. Trac-Trend Anal Chem, 2019,123115770.  

    10. [10]

      MAHER W, FOSTER S, KRIKOWA F, DONNER E, LOMBI E. Measurement of inorganic arsenic species in rice after nitric acid extraction by HPLC-ICPMS:Verification using XANES[J]. Environ Sci Technol, 2013,47:5821-5827.  

    11. [11]

      TORRES AIGDL, GIRALDEZ I, MARTINEZ F, PALENCIA P, CORNS W T, SANCHEZRODAS D. Arsenic accumulation and speciation in strawberry plants exposed to inorganic arsenic enriched irrigation[J]. Food Chem, 2020,315126215.  

    12. [12]

      MENON M, SARKAR B, HUFTON J, REYNOLDS C, YOUNG S. Do arsenic levels in rice pose a health risk to the UK population[J]. Ecotox Environ Safe, 2020,197110601.  

    13. [13]

      NARUKAWA T, TAKATSU A, CHIBA K, RILEY KW, FRENCH D. Investigation on chemical species of arsenic, selenium and antimony in fly ash from coal fuel thermal power stations[J]. J Environ Monitor, 2005,7:1342-1348.  

    14. [14]

      SUN M, LIU G J, WU Q H, LIU W Q. Speciation analysis of inorganic arsenic in coal samples by microwave-assisted extraction and high performance liquid chromatography coupled to hydride generation atomic fluorescence spectrometry[J]. Talanta, 2013,106:8-13.  

    15. [15]

      XU Z, HU H Y, CHEN D K, CAO J X, YAO H. Determination of inorganic arsenic speciation in municipal solid waste incineration fly ash by high performance liquid chromatography-hydride generation-atomic fluorescence spectroscopy with phosphoric acid as extracting agent[J]. Chin J Anal Chem, 2015,43:490-494.

    16. [16]

      ZOU H M, ZHOU C, LI Y X, YANG X S, WEN J, SONG S J, LI C X, SUN C J. Speciation analysis of arsenic in edible mushrooms by high-performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry[J]. Food Chem, 2020127033.

    17. [17]

      HE K Q, YUAN C G, SHI M D, JIANG Y H, YU S J. Fractions of arsenic and selenium in fly ash by ultrasound-assisted sequential extraction[J]. Rsc Adv, 2020,10:9226-9233.  

    18. [18]

      MONTPERRUS M, BOHARI Y, BUENO M, ASTRUC A, ASTRUC M. Comparison of extraction procedures for arsenic speciation in environmental solid reference materials by high-performance liquid chromatography-hydride generation-atomic fluorescence spectroscopy[J]. Appl Organomet Chem, 2010,16:347-354.  

    19. [19]

      LEERMAKERS M, BAEYENS W, DE GIETER M, SMEDTS B, MEERT C, DE BISSCHOP H C, MORABITO R, QUEVAUVILLER P. Toxic arsenic compounds in environmental samples:Speciation and validation[J]. Trac-Trend Anal Chem, 2006,25(1):1-10.  

    20. [20]

      GARCIAMANYES S, JIMENEZ G, PADRO A, RUBIO R, RAURET G. Arsenic speciation in contaminated soils[J]. Talanta, 2002,58:97-109.  

    21. [21]

      GAO X B, WANG Y X, HU Q H. Fractionation and speciation of arsenic in fresh and combusted coal wastes from Yangquan, northern China[J]. Environ Geochem Hltha, 2012,34:113-122.  

    22. [22]

      LIU Z X, HAO Y, ZHANG J, WU S M, PAN Y, ZHOU J Z, QIAN G R. The characteristics of arsenic in Chinese coal-fired power plant flue gas desulphurisation gypsum[J]. Fuel, 2020,271117515.  

    23. [23]

      LI J Y, WANG J M. Integrated life cycle assessment of improving saline-sodic soil with flue gas desulfurization gypsum[J]. J Clean Prod, 2018,202:332-341.  

    24. [24]

      HUANG Y D, YANG Y H, HU H Y, XU M, LIU H, LI X, WANG X Y, YAO H. A deep insight into arsenic adsorption over γ-Al2O3 in the presence of SO2/NO[J]. Process Combust Inst, 2019,37:2951-2957.

  • 加载中
    1. [1]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    2. [2]

      Zhaojing HuangHao LiJiayi LuoShunxing LiMing ZhaoFengjiao LiuHaijiao Xie . Deep learning-based simultaneous bioavailability assessment and speciation analysis of dissolved organic copper. Chinese Chemical Letters, 2025, 36(5): 110209-. doi: 10.1016/j.cclet.2024.110209

    3. [3]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    4. [4]

      Junhua WangXin LianXichuan CaoQiao ZhaoBaiyan LiXian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180

    5. [5]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    6. [6]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    7. [7]

      Xuan SongTeng FuYajie YangYahan KuangXiuli WangYu-Zhong Wang . Spatial-confinement combustion strategy enabling free radicals chemiluminescence direct-measurement in flame-retardant mechanism. Chinese Chemical Letters, 2025, 36(5): 110699-. doi: 10.1016/j.cclet.2024.110699

    8. [8]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    9. [9]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    10. [10]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    11. [11]

      Deli ChenJiawen LiXudong XuZhaocui SunYun YangMinghui XuHanqiao LiangJunshan YangHui MengGuoxu MaJianhe Wei . Plant-microbial interactions inspired the discovery of novel sesquiterpenoid dimeric skeletons of hidden natural products from Hibiscus tiliaceus. Chinese Chemical Letters, 2024, 35(10): 109451-. doi: 10.1016/j.cclet.2023.109451

    12. [12]

      Jinqi YangXiaoxiang HuYuanyuan ZhangLingyu ZhaoChunlin YueYuan CaoYangyang ZhangZhenwen Zhao . Direct observation of natural products bound to protein based on UHPLC-ESI-MS combined with molecular dynamics simulation. Chinese Chemical Letters, 2025, 36(5): 110128-. doi: 10.1016/j.cclet.2024.110128

    13. [13]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    14. [14]

      Quan XuYe-Qing DuPan-Pan ChenYili SunZe-Nan YangHui ZhangBencan TangHong WangJia LiYue-Wei GuoXu-Wen Li . Computation assisted chemical study of photo-induced late-stage skeleton transformation of marine natural products towards new scaffolds with biological functions. Chinese Chemical Letters, 2025, 36(5): 110141-. doi: 10.1016/j.cclet.2024.110141

    15. [15]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    16. [16]

      A-Yang WangSheng-Hua ZhouMao-Yin RanXin-Tao WuHua LinQi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377

    17. [17]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    18. [18]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

Metrics
  • PDF Downloads(1)
  • Abstract views(214)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return