Citation: Kai Wang, Yarui Song, Guo Li, Fajun Zhao. Progress in Electrochemical Synthesis of Ferrates and Treatment of Activated Sludge[J]. Chemistry, ;2021, 84(6): 553-562. shu

Progress in Electrochemical Synthesis of Ferrates and Treatment of Activated Sludge

  • Corresponding author: Yarui Song, songyr2003@163.com
  • Received Date: 26 November 2020
    Accepted Date: 9 February 2021

Figures(5)

  • The increasing production of waste activated sludge (WAS) has become a common problem in wastewater treatment plants. Ferrate, which can oxidize, disinfect, flocculate or adsorb particles, has great potential for future application in sludge treatment. However, ferrate is volatile at room temperature which readily decomposes to ferric iron. Therefore, there is a great demand for on-line production technology of ferrate. In this paper, based on the properties of ferrates, the electrochemical synthesis of ferrates and its influencing factors are reviewed, and the application progress in the on-line production of ferrates is introduced. Then, treatment mechanisms and effects of ferrate on sludge dewatering, minimization and anaerobic fermentation in WAS treatment are illustrated. Finally, the paper is summed up and an understanding for the related future development is put forward in order to improve treatment efficiency and save costs.
  • 加载中
    1. [1]

      Kim J, Yu Y, Lee C. Bioresource Technol., 2013, 144: 194~201. 

    2. [2]

      Hu J W, Li Z, Zhang A, et al. Environ. Res., 2020, 188: 109764. 

    3. [3]

       

    4. [4]

      Zhang X H, Lei H Y, Chen K, et al. Chem. Eng. J., 2012, 210: 467~474. 

    5. [5]

      Xiao K K, Chen Y, Jiang X, et al. Water Res., 2016, 105: 470~478. 

    6. [6]

      Xiao K K, Seow W Y, Chen Y, et al. Chem. Eng. J., 2017, 322: 463~471. 

    7. [7]

      Huang Y F, Chiueh P T, Lo S L, et al. Energy Procedia, 2019, 158: 67~72. 

    8. [8]

      Lin J G, Ma Y S, Huang C C. Bioresource Technol., 1998, 65(1): 35~42.

    9. [9]

      Wu C, Zhang G M, Zhang P Y, et al. Chem. Eng. J., 2014, 240: 420~425. 

    10. [10]

      Ma X J, Xing M Y, Wang Y, et al. J. Environ. Manag., 2016, 170: 207~214. 

    11. [11]

      Liu L M, Li L, Wu Z X, et al. Physiological responses to ferrate (Ⅵ) stress in Microcystis aeruginosa. 2011 International Conference on Remote Sensing, Environment and Transportation Engineering, RSETE 2011-Proceedings, 2011.

    12. [12]

      Sharma V K, Zboril R, Varma R S. Acc. Chem. Res., 2015, 48(2): 182~191. 

    13. [13]

      Ma Y, Zhang K J, Li C, et al. Biomed. Res. Int., 2015: 973942.

    14. [14]

      Sun X H, Zhang Q, Liang H, et al. J. Hazard. Mater., 2016, 319: 130~136. 

    15. [15]

      Rai P K, Lee J, Kailasa S K, et al. Environ. Res., 2018, 160: 420~448. 

    16. [16]

      Jiang J Q, Graham N, André C, et al. Water Res., 2002, 36(16): 4064~4078. 

    17. [17]

      Ye F X, Ji H Z, Ye Y F. J. Hazard. Mater., 2012, 219~220: 164~168.

    18. [18]

      Wu C, Jin L, Zhang P, et al. Int. Biodeter. Biodegr., 2015, 102: 137~142. 

    19. [19]

      Ye F X, Liu X W, Li Y. J. Hazard. Mater., 2012, 199~200: 158~163.

    20. [20]

      Li L, He J G, Wang M F, et al. ACS Sustain. Chem. Eng., 2018, 6(12): 16819~16827. 

    21. [21]

       

    22. [22]

      Yang E L, Shi J, Liang H C. Electrochim. Acta, 2012, 63: 369~374. 

    23. [23]

      Wood R H. J. Am. Chem. Soc., 1958, 80(9): 2038~2041. 

    24. [24]

      Sharma V K. Adv. Environ. Res., 2002, 6(2): 143~156. 

    25. [25]

      Song Y L, Deng Y, Jung C. Chemosphere, 2016, 146: 145~153. 

    26. [26]

      Schreyer J M, Ockerman L T. Anal. Chem., 1951, 23(9): 1312~1314. 

    27. [27]

      Kolar M, Novak P, Machalova K, et al. Phys. Chem. Chem. Phys., 2016, 18(6): 4415~4422. 

    28. [28]

       

    29. [29]

      Li C, Li X Z, Graham N. Chemosphere, 2005, 61: 537~43. 

    30. [30]

      Lan S H, Ma P, Wan Y D, et al. Adv. Mater. Res., 2013, 726~731: 2333~2337.

    31. [31]

    32. [32]

       

    33. [33]

      Wang B H, Dong J, Gu D, et al. Ionics, 2016, 22(10): 1967~1972. 

    34. [34]

       

    35. [35]

      Bouzek K, Rousar I. Electrochim. Acta, 1993, 38(13): 1717~1720. 

    36. [36]

      Licht S, Naschitz V, Liu B, et al. . J. Power Sources, 2001, 99(1-2): 7~14. 

    37. [37]

      Licht S, Tel-Vered R, Halperin L. Electrochem. Commun., 2002, 4(11): 933~937. 

    38. [38]

      François L, Gérard V. Electrochem. Commun., 2002, 4: 764~766. 

    39. [39]

      Licht S, Yu X W. Environ. Scie. Technol., 2005, 39(20): 8071~8076. 

    40. [40]

      Ding L, Li X Z, Lee S C. Chemosphere, 2013, 92(10): 1301~1306. 

    41. [41]

      Cataldo-Hernandez M A, Govindarajan R, Bonakdarpour A, et al. Can. J. Chem. Eng., 2018, 96(8): 1648~1655. 

    42. [42]

      Liu C X, Zhou Z M, Yuan B L, et al. J. Environ. Eng., 2018, 144(10): 04018105. 

    43. [43]

      Zeng F H, Chen C, Huang X F. Chemosphere, 2020, 241: 125124. 

    44. [44]

      Wang K M, Shu J, Wang S J, et al. J. Hazard. Mater., 2020, 384: 121458. 

    45. [45]

      Alsheyab M, Jiang J Q, Stanford C. J. Environ. Manag., 2009, 90(3): 1350~1356. 

    46. [46]

      Bouzek K, Roušar I. J. Appl. Electrochem., 1996, 26(9): 919~923. 

    47. [47]

      Huang J H, Yang Z H, Wang S Q, et al. J. Solid State Electrochem., 2015, 19(3): 723~730. 

    48. [48]

      Wang S Q, Yang Z H, Liu D R, et al. Electrochem. Commun., 2010, 12: 367~370. 

    49. [49]

      Yang E L, Shi J J, Liang H C. Electrochim. Acta, 2012, 63: 369~374. 

    50. [50]

      Maghraoui A E, Zerouale A, Ijjaali M, et al. Int. J. Chem., 2015, 3(3): 79~85.

    51. [51]

      Hives J, Benova M, Bouzek K, et al. Electrochem. Commun., 2006, 8(11): 1737~1740. 

    52. [52]

      Mavre F, Anand R K, Laws D R, et al. Anal. Chem., 2010, 82(21): 8766~8774. 

    53. [53]

      Segundo J, Salazar-Banda G R, Feitoza A C O, et al. Sep. Purif. Technol., 2012, 88: 107~115. 

    54. [54]

      Xiao K K, Pei K Y, Wang H, et al. Water Res., 2018, 140: 232~242. 

    55. [55]

      Chen Z, Zhang W, Wang D, et al. Water Res., 2015, 83: 367~376. 

    56. [56]

      Wang H F, Hu H, Wang H J, et al. Sci. Total Environ., 2018, 643: 1065~1073. 

    57. [57]

      Wang H F, Hu H, Wang H J, et al. J. Clean. Product., 2019, 211: 387~395. 

    58. [58]

      Zhang W, Xiao P, Liu Y, et al. . Sep. Purif. Technol., 2014, 132: 430~437. 

    59. [59]

      Wang D, Zhao T, Yan L, et al. Int. J. Biol. Macromol., 2016, 92: 761~768. 

    60. [60]

      Zhang J, Yue Q, Xia C, et al. Sep. Purif. Technol., 2017, 174: 331~337. 

    61. [61]

      Smith J K, Vesilind P A. Water Res., 1995, 29(12): 2621~2626. 

    62. [62]

      Kopp J, Dichtl N. Water Sci. Technol., 2000, 42(9): 141~149. 

    63. [63]

      Vaxelaire J, Cézac P. Water Res., 2004, 38(9): 2215~2230. 

    64. [64]

      Jin L Y, Zhang G, Zheng X. J. Environ. Sci., 2015, 28: 22~28. 

    65. [65]

      Zhang W, Cao B, Wang D, et al. Chem. Eng. J., 2016, 106: 37~47.

    66. [66]

      Wu J H, Lu T, Bi J W, et al. Chemosphere, 2019, 237: 124339. 

    67. [67]

      Liu Y L, Wang L, Ma J, et al. Chem. Eng. J., 2016, 287: 11~18. 

    68. [68]

      Li X, Yuan Y, Jin R, et al. J. Environ. Manag., 2019, 243: 350~357. 

    69. [69]

      Ning X A, Feng Y F, Wu J J, et al. J. Environ. Manag., 2015, 162: 81~86. 

    70. [70]

      Li W, Yu N, Liu Q, et al. Sci. Total Environ., 2018, 635: 699~704. 

    71. [71]

      Zhang Y P, Hu R, Tian J, et al. Bioresource Technol., 2018, 267: 126~132. 

    72. [72]

      Luo J Y, Feng L Y, Chen Y G, et al. Water Res., 2015, 73: 332~341. 

    73. [73]

      Elefsiniotis P, Wareham D G, Oldham W K. J. Environ. Technol., 1996, 30(5): 1508~1514. 

    74. [74]

      He Z W, Tang C C, Liu W Z, et al. Bioresource Technol., 2019, 289: 121642. 

    75. [75]

      Wang Y L, Wang D B, Liu Y W, et al. Water Res., 2017, 127: 150~161. 

    76. [76]

      Hu J W, Guo B, Li Z, et al. Bioresource Technol., 2020, 317: 124022. 

    77. [77]

      Li W, Fang A, Liu B, et al. Chem. Eng. J., 2019, 378: 122098. 

    78. [78]

      Li W, Yu N, Fang A, et al. Chem. Eng. J., 2019, 361: 148~155. 

    79. [79]

      He H Y, Liu Y L, Wang X S, et al. Chem. Eng. J., 2018, 343: 520~529. 

    80. [80]

      Wang J S, Zhang Z J, Ye X, et al. Bioresource Technol., 2020, 297: 122376. 

    81. [81]

      Liu S L, Yang G, Fu J W, et al. Environ. Sci. Pollut. Res., 2018, 25(35): 35154~35163. 

    82. [82]

      Li X M, Kuang Z, Zhang J M, et al. ACS Sustain. Chem. Eng., 2020, 8(23): 8681~8691. 

  • 加载中
    1. [1]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    2. [2]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    3. [3]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    4. [4]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

    5. [5]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    6. [6]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    7. [7]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

    8. [8]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    9. [9]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    10. [10]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    11. [11]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    12. [12]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    13. [13]

      Zhaohu Li Weidong Wang Yuhao Liu Mingzhe Han Lingling Wei Huan Jiao . Research on the Safety Management and Disposal of Chemical Laboratory Waste. University Chemistry, 2024, 39(10): 128-136. doi: 10.3866/PKU.DXHX202312090

    14. [14]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    15. [15]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    16. [16]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    17. [17]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    18. [18]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    19. [19]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    20. [20]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

Metrics
  • PDF Downloads(77)
  • Abstract views(4649)
  • HTML views(934)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return