Citation: CHENG Xiang-long, WANG Yong-gang, SUN Jia-liang, SHEN Tian, ZHANG Hai-yong, XU De-ping. Promoting effect of oxidation reaction on steam gasification reaction in Shengli lignite gasification process Ⅰ: Macroscopic reaction characteristic[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(1): 15-20. shu

Promoting effect of oxidation reaction on steam gasification reaction in Shengli lignite gasification process Ⅰ: Macroscopic reaction characteristic

  • Corresponding author: WANG Yong-gang, wyg1960@126.com
  • Received Date: 17 August 2016
    Revised Date: 21 November 2016

    Fund Project: the 12th Five-Year Plan of National Science and Technology Support 2012BAA04B02

Figures(8)

  • Shengli brown coal in 150-180 μm was gasified at 800-900℃ in a simulated entrained-flow reactor, φ80×3 000 mm. Conversion and kinetics of steam gasification reaction of the lignite were discussed to investigate synergistic effects of oxidation reaction on steam gasification reaction. The results show that lignite conversion under H2O+1%O2 atmospheres is greater significantly than the sum of that under H2O atmosphere and 1%O2 atmosphere, i.e., the increase of lignite conversion from H2O atmosphere to H2O+1%O2 atmospheres is greater than that from N2 atmosphere to N2+1%O2 atmospheres. The synergistic effects are caused by promoting effect of oxidation reaction on steam gasification reaction, and are more obvious as H2O content increasing and temperature rising. Moreover, the similar experiments were carried out in φ40×200 mm cylindrical quartz fluidized bed, and the synergistic effects are also found. The steam gasification reaction rate equation, \begin{document}$ (Z-{{(1-x)}^{\frac{1}{3}}})=\frac{t\beta {{k}_{{{\text{H}}_{2}}\text{O}}}}{R{{\rho }_{\text{C}}}}{{\varphi }_{{{\text{H}}_{2}}\text{O}}}={{K}_{{{\text{H}}_{2}}\text{O}}}{{\varphi }_{{{\text{H}}_{2}}\text{O}}} $\end{document}, is in good agreement with experimental data. This indicates that the apparent rate constant KH2O increases obviously after O2 adding to water vapor, which is the kinetic characteristics of promoting effect of oxidation reaction on steam gasification reaction.
  • 加载中
    1. [1]

      WANG Yi. Macro & Micro Characteristic Analysis and Application for Massive Lignite High Temperature Steam Pyrolysis[M]. Xuzhou:China University of Mining and Technology Press, 2012.

    2. [2]

      DAI He-wu, XIE Ke-yu. Brown Coal Utilization Technology[M]. Beijing:China Coal Industry Publishing House, 1999.

    3. [3]

      LI C Z. Importance of volatile-char interactions during the pyrolysis and gasification of low-rank fuels-A review[J]. Fuel, 2013,112:609-623. doi: 10.1016/j.fuel.2013.01.031

    4. [4]

      TAY H L, KAJITAANI S, ZHANG S, LI C Z. Effects of gasifying agent on the evolution of char structure during the gasification of Victorian brown coal[J]. Fuel, 2013,103:22-28. doi: 10.1016/j.fuel.2011.02.044

    5. [5]

      ZHOU Chen-liang, LIU Quan-sheng, LI Yang, ZHI Ke-duan, TENG Ying-yue, SONG Yin-min. Production of hydrogen-rich syngas by steam gasification of Shengli lignite and catalytic effect of inherent minerals[J]. CIESC, 2013,64(6):2092-2102.  

    6. [6]

      REN Hai-jun, ZHANG Yong-qi, FANG Yi-tian, HUANG Jie-jie, WANG Yang. Effect of minerals in lignite char on kinetics of steam gasification[J]. Chem Eng (China), 2010,38(10):132-135.  

    7. [7]

      CRNOMARKOVIC N, REPIC B, MLADENOVIC R, NESKOVIC O, VELJKOVIC M. Experimental investigation of role of steam in entrained flow coal gasification[J]. Fuel, 2007,86(1):194-202.  

    8. [8]

      LEE J G, KIM J H, LEE H G. Characteristics of entrained flow coal gasification in a drop tube reactor[J]. Fuel, 1996,75(9):1035-1042. doi: 10.1016/0016-2361(96)00084-1

    9. [9]

      TAY H L, LI C Z. Changes in char reactivity and structure during the gasification of a Victorian brown coal:Comparison between gasification in O2 and CO2[J]. Fuel Process Technol, 2010,91(8):800-804. doi: 10.1016/j.fuproc.2009.10.016

    10. [10]

      LI T T, ZHANG L, DONG L, LI C Z. Effects of gasification atmosphere and temperature on char structural evolution during the gasification of Collie sub-bituminous coal[J]. Fuel, 2014,117(part B):1190-1195.

    11. [11]

      ZHANG S, MIN Z H, TAY H L, ASADULLAH M, LI C Z. Effects of volatile-char interactions on the evolution of char structure during the gasification of Victorian brown coal in steam[J]. Fuel, 2011,90(4):1529-1535. doi: 10.1016/j.fuel.2010.11.010

    12. [12]

      WU H W, LI X J, HAYASHI J I, CHIBA T, LI CZ. Effects of volatile-char interactions on the reactivity of charsfrom NaCl-loaded Loy Yang brown coal[J]. Fuel, 2005,84(10):1221-1228. doi: 10.1016/j.fuel.2004.06.037

    13. [13]

      ZHANG S, HAYASHI J I, LI C Z. Volatilization and catalytic effects of alkali and alkaline earth metallic species during the paralysis and gasification of Victorian brown coal. Part IX. Effects of volatile-charinteractions on char-H2O and char-O2reactivates[J]. Fuel, 2011,90(4):1655-1661. doi: 10.1016/j.fuel.2010.11.008

    14. [14]

      WANG F J, ZHANG S, CHEN Z D, LIU C, WANG Y G. Tar reforming using char as catalyst during pyrolysis and gasification of Shengli brown coal[J]. J Anal Appl Pyrolysis, 2014,105:269-275. doi: 10.1016/j.jaap.2013.11.013

    15. [15]

      KOMAROVA E, GUHL S, MEYER B. Brown coal char CO2-gasification kinetics with respect to the char structure. Part Ⅰ:Char structure development[J]. Fuel, 2015,152:38-47. doi: 10.1016/j.fuel.2015.01.107

    16. [16]

      KAJITANI S, TAY H L, ZHANG S, LI C Z. Mechanisms and kinetic modeling of steam gasification of brown coal in the presence of volatile-char interactions[J]. Fuel, 2013,103:7-13. doi: 10.1016/j.fuel.2011.09.059

    17. [17]

      WANG Yong-gang, SUN Jia-liang, ZHANG Shu. Impacts of the gas atmosphere on the gasification reactivity and char structure of the brown coal[J]. J China Coal Soc, 2014,39(8):1765-1771.  

    18. [18]

      HE Yong-de. Modern Coal Chemical Industry Technical Manuals[M]. 2nd ed. Beijing:Chemical Industry Press, 2001.

    19. [19]

      LONG F J, SYKES K W. The mechanism of the steam-carbon reaction[J]. Proc R Soc, London, 1948,A193:377-99.

    20. [20]

      WEN C Y, LEE E S. Coal Conversion Technology[M]. New Jersey:Addisonwesley Publishing Co, Inc, 1979.

    21. [21]

      KWON T W, KIM J R, KIM S D, PARK W H. Catalytic steam gasification of lignite char[J]. Fuel, 1988,68(4):416-421.

    22. [22]

      MATSUI I, KUNII D, FURUSAWA T. Study of fluidized bed steam gasification of char by thermogravimetrically obtained kinetics[J]. J Chem Eng Jpn, 1985,18(2):105-113. doi: 10.1252/jcej.18.105

  • 加载中
    1. [1]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    2. [2]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    3. [3]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    4. [4]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    5. [5]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    6. [6]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    7. [7]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    8. [8]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    9. [9]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    12. [12]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    13. [13]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    14. [14]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    15. [15]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    16. [16]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    17. [17]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    18. [18]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    19. [19]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    20. [20]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

Metrics
  • PDF Downloads(1)
  • Abstract views(644)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return