Citation: Cao Jinjun, Shan Yanguang. Simulation on Three Dimensional Nanoscale Thin-Film Deposition[J]. Chemistry, ;2018, 81(7): 641-645. shu

Simulation on Three Dimensional Nanoscale Thin-Film Deposition

  • Corresponding author: Shan Yanguang, shan@usst.edu.cn
  • Received Date: 3 March 2018
    Accepted Date: 26 April 2018

Figures(9)

  • The dual scale structure formed after the drying based on the three-dimensional kinetic Monte Carlo model. The effects of liquid chemical potential, nanoparticle migration rate, chemical potential sharpness and liquid critical evaporation rate on the structure of film are explored. The results indicate that, when the film is drying, the nanoparticles in the film move along with the three phase lines, and a variety of sedimentary structures are formed in the substrate. With the increase of the initialization chemical potential of the liquid, the deposition structure gradually becomes a dense network structure with uniform distribution. With the decrease of the critical evaporation rate of liquid, the deposition structure become more obvious after the liquid chemical potential is abrupt. The faster the nanoparticle moves, the less the branched structure in the deposition structure. The sharpness of chemical potential has a great influence on the difference of the structure of the double-scale sedimentary structure. With the greater the sharpness, the difference between the two kinds of sedimentary structures will be greater.
  • 加载中
    1. [1]

      K J Lee, J Yoon, J Lahann. Curr. Opin. Colloid Interf. Sci., 2011, 16(3):195-202. 

    2. [2]

      T Pavlo, H C Chang. Ind. Eng. Chem. Res., 2002, 41(25):6256-6269. 

    3. [3]

    4. [4]

      E Rabani, D R Reichman, P L Geissler et al. Nature, 2003, 426(6964):271-274. 

    5. [5]

      G Yosef, E Rabani. J. Phys. Chem. B, 2006, 110(42):20965-20972. 

    6. [6]

      A Stannard, C P Martin, E Pauliacvaujour et al. J. Phys. Chem. C, 2011, 112(39):15195-15203.

    7. [7]

      C G Sztrum, O Hod, E Rabani. J. Phys. Chem. B, 2005, 109(14):6741-6747. 

    8. [8]

      E Pauliac-Vaujour, A Stannard, C P Martin et al. Phys. Rev. Lett., 2008, 100(17):176102. 

    9. [9]

      X Zhang, A Crivoi, F Duan. Sci Rep., 2015, 5:10926. 

    10. [10]

      Y Wang, Y Song, S Watanabe et al. ACS Appl. Mater. Interf., 2012, 4(12):6443-6449. 

    11. [11]

      X Zhang, Y Wang, S Watanabe et al. Soft Matter, 2011, 7(19):8745-8748. 

    12. [12]

      P W Chen, N C Lee, Y H Chien et al. Clin. Chim. Acta, 2014, 431(3):19-22.

    13. [13]

      T Sou, L M Kaminskas, T H Nguyen et al. Eur. J. Pharm. Biopharm., 2013, 83(2):234-243. 

    14. [14]

      A Accardo, F Gentile, F Mecarini et al. Langmuir, 2010, 26(18):15057-15064. 

    15. [15]

      F Gentile, M L Coluccio, N Coppedè et al. ACS Appl. Mater. Interf., 2012, 4(6):3213-3224. 

  • 加载中
    1. [1]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    4. [4]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    5. [5]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    6. [6]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    7. [7]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    8. [8]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    9. [9]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    10. [10]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    11. [11]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    12. [12]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    13. [13]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    14. [14]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    15. [15]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    16. [16]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    17. [17]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    18. [18]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    19. [19]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    20. [20]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

Metrics
  • PDF Downloads(4)
  • Abstract views(992)
  • HTML views(491)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return