Catalytic decomposition of N2O over Y-Co3O4 composite oxides prepared by one-step hydrothermal method
- Corresponding author: XU Xiu-feng, xxf@ytu.edu.cn
Citation:
ZHAO Tian-qi, GAO Qiang, LI He-jian, XU Xiu-feng. Catalytic decomposition of N2O over Y-Co3O4 composite oxides prepared by one-step hydrothermal method[J]. Journal of Fuel Chemistry and Technology,
;2019, 47(4): 446-454.
REILLY J, PRINN R, HARNISCH J, FITZMAURICE J, JACOBY H, KICKLIGHTER D, MELILLO J, STONE P, SOKOLOV A, WANG C. Multi-gas assessment of the Kyoto Protocol[J]. Nature, 1999,401:549-555. doi: 10.1038/44069
ZHENG L, LI H J, XU X F. Catalytic decomposition of N2O over Mg-Co composite oxides hydrothermally prepared by using carbon sphere as template[J]. J Fuel Chem Technol, 2018,46(5):569-577. doi: 10.1016/S1872-5813(18)30024-0
YAN L, REN T, WANG X L, JI D, SUO J S. Catalytic decomposition of N2O over MxCo1-xCo2O4(M=Ni, Mg) spinel oxides[J]. Appl Catal B:Environ, 2003,45(2):85-90. doi: 10.1016/S0926-3373(03)00174-7
IVANOVA Y A, SUTORMINA E F, ISUPOVA L A, ROGOV V A. Effect of the composition of NixCo3-xO4(x =0-0.9) oxides on their catalytic activity in the low-temperature reaction of N2O decomposition[J]. Kinet Catal, 2018,59(3):365-370.
DOU Z, ZHANG H J, PAN Y F, XU X F. Catalytic decomposition of N2O over potassium-modified Cu-Co spinel oxides[J]. J Fuel Chem Technol, 2014,42(2):238-245. doi: 10.1016/S1872-5813(14)60016-5
FRANKEN T, PALKOVITS R. Investigation of potassium doped mixed spinels CuxCo3-xO4 as catalysts for an efficient N2O decomposition in real reaction conditions[J]. Appl Catal B:Environ, 2015,176/177(298)305.
WANG Y Z, HUO X B, ZHANG K, WEI X H, ZHAO Y X. Effect of SnO2 on the structure and catalytic performance of Co3O4 for N2O decomposition[J]. Catal Commun, 2018,111:70-74. doi: 10.1016/j.catcom.2018.04.004
TURSUN M, WANG X P, ZHANG F, YU H B. Bi-Co3O4 catalyzing N2O decomposition with strong resistance to CO2[J]. Catal Commun, 2015,65:1-5. doi: 10.1016/j.catcom.2015.02.013
YU H B, TURSUN M, WANG X P, WU X X. Pb0.04Co catalyst for N2O decomposition in presence of impurity gases[J]. Appl Catal B:Environ, 2016,185:110-118. doi: 10.1016/j.apcatb.2015.12.011
YU H B, WANG X P, WU X X, CHEN Y. Promotion of Ag for Co3O4 catalyzing N2O decomposition under simulated real reaction conditions[J]. Chem Eng J, 2018,334:800-806. doi: 10.1016/j.cej.2017.10.079
KIM M J, LEE S J, RYU I S, JEON M W, MOON S H, ROH H S, JEON S G. Catalytic decomposition of N2O over cobalt based spinel oxides:The role of additives[J]. Mol Catal, 2017,422:202-207.
XUE L, HE H, LIU C, ZHANG C B, ZHANG B. Promotion effects and mechanism of alkali metals and alkaline earth metals on cobalt-cerium composite oxide catalysts for N2O decomposition[J]. Environ Sci Technol, 2009,43(3):890-895. doi: 10.1021/es801867y
DZIEMBAJR, ZAITZ, RUTKOWSKAM, MOLENDAM, CHMIELARZL. Nanostructured Co-Ce-O systems for catalytic decomposition of N2O[J]. Catal Today, 2012,191(1):121-124. doi: 10.1016/j.cattod.2012.02.045
YOU Y, CHANG H, MA L, GUO L, QIN X, LI J Y, LI J H. Enhancement of N2O decomposition performance by N2O pretreatment over Ce-Co-O catalyst[J]. Chem Eng J, 2018,347:184-192. doi: 10.1016/j.cej.2018.04.081
ABUZIED B M, BAWAKED S M, KOSA S A, SCHWIEGER W. Effect of Pr, Sm, and Tb doping on the morphology, crystallite size, and N2O decomposition activity of Co3O4 nanorods[J]. J Nanomater, 2015,56(12):1417-1423.
GRANGER P, ESTEVES P, KIEGER S, NAVASCUES L, LECLERCQ G. Effect of yttrium on the performances of zirconia based catalysts for the decomposition of N2O at high temperature[J]. Appl Catal B:Environ, 2006,62:236-243. doi: 10.1016/j.apcatb.2005.07.015
ABU-ZIED B M, BAWAKED S M, KOSA S A, ALI T T, SCHWIEGER W, AQLAN F M. Effects of Nd-, Pr-, Tb-and Y-doping on the structural, textural, electrical and N2O decomposition activity of mesoporous NiO nanoparticles[J]. Appl Surf Sci, 2017,419:399-408.
ABU-ZIED B M, BAWAKED S M, KOSA S A, SCHWIEGER W. Impact of Gd-, La-, Nd-and Y-doping on the textural, electrical conductivity and N2O decomposition activity of CuO catalyst[J]. Int J Electrochem Sci, 2016,11:2230-2246.
QIU Y J, HUANG S Q, PANG Z T, SONG Y J, WANG X C, LI C Q, WANG H. Catalytic decomposition of N2O over CuYO/γ-Al2O3 catalysts[J]. Environ Chem, 2018,37(7):1591-1598.
LIU Z M, HE C X, CHEN B H, LIU H Y. CuO-CeO2 mixed oxide catalyst for the catalytic decomposition of N2O in the presence of oxygen[J]. Catal Today, 2017,297:78-83. doi: 10.1016/j.cattod.2017.05.074
PAN Y F, FENG M, CUI X, XU X F. Catalytic activity of alkali metal doped Cu-Al mixed oxides for N2O decomposition in the presence of oxygen[J]. J Fuel Chem Technol, 2012,40(5):601-607. doi: 10.1016/S1872-5813(12)60024-3
STELMACHOWSKI P, MANIAK G, KOTARBA A, SOJKA Z. Strong electronic promotion of Co3O4 towards N2O decomposition by surface alkali dopants[J]. Catal Commun, 2009,10(7):1062-1065. doi: 10.1016/j.catcom.2008.12.057
LI H J, ZHENG L, ZHAO T Q, XU X F. Effect of preparation parameters on the catalytic performance of hydrothermally synthesized Co3O4 in the decomposition of N2O[J]. J Fuel Chem Technol, 2018,46(6):717-724. doi: 10.1016/S1872-5813(18)30031-8
Ruiying Liu , Li Zhao , Baishan Liu , Jiayuan Yu , Yujie Wang , Wanqiang Yu , Di Xin , Chaoqiong Fang , Xuchuan Jiang , Riming Hu , Hong Liu , Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332
Sanmei Wang , Dengxin Yan , Wenhua Zhang , Liangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611
Guoping Yang , Zhoufu Lin , Xize Zhang , Jiawei Cao , Xuejiao Chen , Yufeng Liu , Xiaoling Lin , Ke Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274
Yunli Xu , Xuwen Da , Lei Wang , Yatong Peng , Wanpeng Zhou , Xiulian Liu , Yao Wu , Wentao Wang , Xuesong Wang , Qianxiong Zhou . Ru(Ⅱ)-based aggregation-induced emission (AIE) agents with efficient 1O2 generation, photo-catalytic NADH oxidation and anticancer activity. Chinese Chemical Letters, 2025, 36(5): 110168-. doi: 10.1016/j.cclet.2024.110168
Lanfang Wang , Jiangnan Lv , Yujia Li , Yanqing Hao , Wenjiao Liu , Hui Zhang , Xiaohong Xu . One-step synthesis of nanowoven ball-like NiS-WS2 for high-efficiency hydrogen evolution. Chinese Chemical Letters, 2025, 36(1): 109597-. doi: 10.1016/j.cclet.2024.109597
Anqiu LIU , Long LIN , Dezhi ZHANG , Junyu LEI , Kefeng WANG , Wei ZHANG , Junpeng ZHUANG , Haijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424
Qinwen Zheng , Xin Liu , Lintao Tian , Yi Zhou , Libing Liao , Guocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771
Tao Tang , Chen Li , Sipu Li , Zhong Qiu , Tianqi Yang , Beirong Ye , Shaojun Shi , Chunyang Wu , Feng Cao , Xinhui Xia , Minghua Chen , Xinqi Liang , Xinping He , Xin Liu , Yongqi Zhang . One-step constructing advanced N-doped carbon@metal nitride as ultra-stable electrocatalysts via urea plasma under room temperature. Chinese Chemical Letters, 2024, 35(11): 109887-. doi: 10.1016/j.cclet.2024.109887
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
Peng Zhang , Yitao Yang , Tian Qin , Xueqiu Wu , Yuechang Wei , Jing Xiong , Xi Liu , Yu Wang , Zhen Zhao , Jinqing Jiao , Liwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005
Xiaoqiang Wang , Fangyuan Zhou , Yue Liu , Zhongbiao Wu . CePO4 supported Cr catalyst with superior sulfur tolerance for selective catalytic oxidation of ammonia. Chinese Chemical Letters, 2025, 36(7): 110420-. doi: 10.1016/j.cclet.2024.110420
Bofei JIA , Zhihao LIU , Zongyuan GAO , Shuai ZHOU , Mengxiang WU , Qian ZHANG , Xiamei ZHANG , Shuzhong CHEN , Xiaohan YANG , Yahong LI . Cu(Ⅱ) and Cu(Ⅰ) complexes based on derivatives of imidazo[1,5-a]pyridine: Synthesis, structures, in situ metal-ligand reactions, and catalytic activity. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1020-1036. doi: 10.11862/CJIC.20240317
Linping Li , Junhui Su , Yanping Qiu , Yangqin Gao , Ning Li , Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
Yanyu Jin , Wenzhe Si , Xing Yuan , Hongjun Cheng , Bin Zhou , Li Cai , Yu Wang , Qibao Wang , Junhua Li . Tuning TM–O interaction by acid etching in perovskite catalysts boosting catalytic performance. Chinese Chemical Letters, 2025, 36(5): 110260-. doi: 10.1016/j.cclet.2024.110260
Xin Li , Wanting Fu , Ruiqing Guan , Yue Yuan , Qinmei Zhong , Gang Yao , Sheng-Tao Yang , Liandong Jing , Song Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625
Xingfen Huang , Jiefeng Zhu , Chuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783
Kaihui Huang , Boning Feng , Xinghua Wen , Lei Hao , Difa Xu , Guijie Liang , Rongchen Shen , Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204
Junqi Wang , Shuai Zhang , Jingjing Ma , Xiangjun Liu , Yayun Ma , Zhimin Fan , Jingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725
a: one step hydrothermal method; b: two step hydrothermal method; c: impregnation
a: one step hydrothermal method; b: two step hydrothermal method; c: impregnation
a: Y/Co=0 (Co3O4); b: Y/Co=0.01; c: Y/Co=0.02; d: Y/Co=0.03; e: Y/Co=0.04; f: Y/Co=0.05
a: Y/Co=0 (Co3O4); b: Y/Co=0.01; c: Y/Co=0.03; d: Y/Co=0.05
a: Y/Co=0 (Co3O4); b: Y/Co=0.01; c: Y/Co=0.03; d: Y/Co=0.05
a: Y/Co=0 (Co3O4); b: Y/Co=0.01; c: Y/Co=0.02; d: Y/Co=0.03; e: Y/Co=0.04; f: Y/Co=0.05
a: Y/Co=0 (Co3O4); b: Y/Co=0.01; c: Y/Co=0.02; d: Y/Co=0.03; e: Y/Co=0.04; f: Y/Co=0.05
■: 0.03Y-Co3O4; ●: 0.03Y-Co3O4 (O2); ▲: 0.03Y-Co3O4 (O2+H2O); ▼: 0.02K/0.03Y-Co3O4; ◆: 0.02K/0.03Y-Co3O4(O2); ◀: 0.02K/0.03Y-Co3O4(O2+H2O)
a: 0.03Y-Co3O4; b: 0.02K/0.03Y-Co3O4