Biomass-derived activated carbon supported potassium catalyst for reduction of NOx in excess oxygen with higher selectivity
- Corresponding author: SHU Yun, shuyun@craes.org.cn
Citation:
SHU Yun, ZHANG Fan, WANG Fan, WANG Hong-mei, WANG Hong-chang. Biomass-derived activated carbon supported potassium catalyst for reduction of NOx in excess oxygen with higher selectivity[J]. Journal of Fuel Chemistry and Technology,
;2017, 45(6): 747-754.
LIU C, SHI J W, GAO C, NIU C M. Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3:A review[J]. Appl Catal A:Gen, 2016,522:54-69. doi: 10.1016/j.apcata.2016.04.023
JIN Yun-zhou, QIAN Jun-lv, WU Yan-hui. Advances in preparation of catalysts by sol-gel method[J]. Ind Catal, 2006,14(11):60-63. doi: 10.3969/j.issn.1008-1143.2006.11.015
COSTA C N, EFSTATHIOU A M. Mechanistic aspects of the H2-SCR of NO on a novel Pt/MgO-CeO2 catalyst[J]. J Phys Chem C, 2007,111(7):3010-3020. doi: 10.1021/jp064952o
HEO L, KIM M K, SUNG S, NAM I, OLSON K L, LI W. Combination of photocatalysis and HC/SCR for improved activity and durability of DeNOx catalysts[J]. Environ Sci Technol, 2013,47(8):3657-3664. doi: 10.1021/es304188k
FANG Xiao-qing, FAN Chui-gang, DU Lin, SONG Wen-li, LIN Wei-gang, LI Song-geng. Reduction of nitric oxide in flue gas by coal char[J]. CIESC J, 2014,65(6):2249-2255.
ILLÁN-GÓMEZ M J, SALINAS-MARTINEZ C, LINARES-SOLANO A. Potassium-containing coal chars as catalysts for NOx reduction in the presence of oxygen[J]. Energy Fuels, 1998,12:1256-1264. doi: 10.1021/ef980067w
BUENO-LÓPEZ A, GARCÍA-GARCÍA A, ILLÁN-GÓMEZ M J, LINARES-SOLANO A. Advances in potassium catalyzed NOx reduction by carbon materials:An overview[J]. Ind Eng Chem Res, 2007,46(12):3891-3907. doi: 10.1021/ie061005t
KORDYLEWSKI W, ZACHARCZUK W, HARDY T. The effect of the calcium in lignite on its effectiveness as a reburn fuel[J]. Fuel, 2005,84(9):1110-1115. doi: 10.1016/j.fuel.2004.10.014
ILLÁN-GÓMEZ M J, RAYMUNDO-PINERO E, GARCÍA-GARCÍA A, LINARES-SOLANO A, SALINAS-MARTINEZ C. Catalytic NOx reduction by carbon supporting metals[J]. Appl Catal B:Environ, 1999,20(4):267-275. doi: 10.1016/S0926-3373(98)00119-2
YAMASHITA H, YAMADA H, TOMITA A. Reaction of nitric oxide with metal-loaded carbon in the presence of oxygen[J]. Appl Catal, 1991,78(2).
IMAI J, SOUMA M, SUZUKI T, RADOVIC L C. Reaction of dimerized NOx (x=1 or 2) with sulfur dioxide in a restricted slit-shaped micropore space[J]. J Phys Chem, 1991,95:9955-9960. doi: 10.1021/j100177a064
GARCÍA-GARCÓA A, CHINCHÓN-YEPES S, LINARES-SOLANO A, SALINAS-MARTINEZ C. NO reduction by potassium-containing coal briquettes Effect of mineral matter content and coal rank[J]. Energy Fuels, 1997,11(2):292-298. doi: 10.1021/ef9601327
ILLÁN-GÓMEZ M J, LINARES-SOLANO A, SALINAS-MARTINEZ C. NO reduction by activated carbon 6. catalysis by transition metal[J]. Energy Fuels, 1995,9(6):976-983. doi: 10.1021/ef00054a007
ZHANG Jun, LIN Xiao-fen, YIN Jia-min, FAN Zhi-lin, XU Yi-qian. Experimental research on the desulphurization performance of biomass char[J]. J Eng Therm, 2005,26(3):537-539.
LU Ping, LU Fei, SHU Tong, WANG Qin-chao. Experimental study on adsorption characteristics of SO2 and NO using biomass-pyrolysis chars[J]. Proc CSEE, 2012,32(35):37-45.
LIU Yang-xian, ZHANG Jun, SHENG Chang-dong, YUAN Shi-jie. New research progress in sorbents for removal of mercury in coal-fired flue gas[J]. Mod Chem Ind, 2008,28(11):19-23. doi: 10.3321/j.issn:0253-4320.2008.11.004
UTSUMI S, VALLEJOS-BURGOS F E, CAMPOS C M, PECCHIB G, RADOVIC L R. Preparation and characterization of inexpensive heterogeneous catalysts for air pollution control:Two case studies[J]. Catal Today, 2007,123(1/4):208-217.
LI D, GAO S Q, SONG W L, XU G W. Experimental study of NO reduction over biomass char[J]. Fuel Process Technol, 2007,88(7):707-715. doi: 10.1016/j.fuproc.2007.02.005
ROSAS J M, RODRÍGUEZ-MIRASOL J, CORDERO T. NO reduction on carbon-supported chromium catalysts[J]. Energy Fuels, 2010,24(6):3321-3328. doi: 10.1021/ef901455v
SZYMANSKI G S, KARPINSKI Z, BINIAK S, SWIATKOWSKI A. The effect of the gradual thermal decomposition of surface oxygen species on the chemical and catalytic properties of oxidized activated carbon[J]. Carbon, 2002,40(14):2627-2639. doi: 10.1016/S0008-6223(02)00188-4
GARCÍA-GARCÍA A, ILLN-GÓMEZ M J, LINARES-SOLANO A, SALINAS-MARTINEZ C. Potassium-containing briquetted coal for the reduction of NO[J]. Fuel, 1997,76(6):499-505. doi: 10.1016/S0016-2361(97)00009-4
GILCHRIST J D. International Series on Materials Science and Technology[M]. London:Pergamon Press, 1980.
ILLÁN-GÓMEZ M J, LINARES-SOLANO A, LJUBISA R R, SALINAS-MARTINEZ C. NO reduction by activated carbons 2. Catalytic effect of potassium[J]. Energy Fuels, 1995,9(1):97-103. doi: 10.1021/ef00049a015
WU X, RADOVIC L R. Inhibition of catalytic oxidation of carbon/carbon composites by phosphorus[J]. Carbon, 2006,44(1):141-151. doi: 10.1016/j.carbon.2005.06.038
XUE Y, GUO Y, ZHANG Z, WANG Y, LU G. The role of surface properties of activated carbon in the catalytic reduction of NO by carbon[J]. Appl Surf Sci, 2008,255(5):2591-2595. doi: 10.1016/j.apsusc.2008.07.167
RADOVIC L R, SUAREZ A, VALLEJOS-BURGOS F, SOFO J O. Oxygen migration on the graphene surface2. Thermochemistry of basal-plane diffusion (hopping)[J]. Carbon, 2011,49(13):4226-4238. doi: 10.1016/j.carbon.2011.05.037
BUENO-LÓPEZ A, GARCÍA-GARCÍA A, CABALLERO-SUREZ J. Development of a kinetic model for the NOx reduction process by potassium-containing coal pellets[J]. Environ Sci Technol, 2002,36:5447-5454. doi: 10.1021/es025823y
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
Jun LI , Huipeng LI , Hua ZHAO , Qinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
1: N2; 2: NO; 3: O2; 4: mass flow controller;5: electric furnace; 6: fixed bed reactor; 7: catalyst; 8: temperature controller; 9: gas analyzer
■: MAC; ●: DAC; ▲: YAC; ◆: HACreaction conditions: [NO] = 0.1%, [O2] = 5%, t=400℃, N2 balance and GHSV = 20000h-1
reaction conditions: [NO] = 0.1%, [O2] = 5%, N2 balance and GHSV = 20000h-1■: NO; □: O2; ●: CO2; ○: CO
a: MAC-K-NO; b: HAC-K-NO; c: MAC-K-O2; d: HAC-K-O2; e: MAC-K-CO2; f: HAC-K-CO2; g: MAC-K-CO; h: HAC-K-COreaction conditions: [NO] = 0.1%, [O2] = 5%, N2 balance and GHSV = 20000h-1
a: MAC-K; b: HAC-K