Citation: LI Wen-ju, GONG Ben-gen, ZHANG Jun-ying. Study on the mineral transformation and heavy metal distribution during high-silicon coal combustion[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(12): 1488-1497. shu

Study on the mineral transformation and heavy metal distribution during high-silicon coal combustion

  • Corresponding author: ZHANG Jun-ying, jyzhang@hust.edu.cn
  • Received Date: 9 September 2020
    Revised Date: 13 October 2020

    Fund Project: Key Scientific Research Projects of Colleges and Universities in Henan Province 20B610007the National Key Research and Development Program of China 2017YFB0603101National Natural Science Foundation of China 41672148Soft Science Project of Henan Science and Technology Department 202400410295The project was supported by the National Key Research and Development Program of China (2017YFB0603101), National Natural Science Foundation of China (41672148), Soft Science Project of Henan Science and Technology Department (202400410295) and Key Scientific Research Projects of Colleges and Universities in Henan Province (20B610007)

Figures(8)

  • The high-silicon coal in Xuanwei area of Yunnan is selected to study the transformation behavior of minerals and the distribution and enrichment of heavy metals during the combustion process. The minerals in high-silicon coal are mainly composed of quartz, kaolinite, pyrite and anatase. The mullite in fly ash may come from the transformation of quartz and kaolinite in coal; the quartz in fly ash mainly comes from the original quartz component in coal or is formed by the conversion of SiO2-Al2O3 system. Analyzing the enrichment characteristics of several heavy metals in high-silicon coal and its fly ash, it can be found that Cr, Cu, and As are enriched in the high-silicon coal, and Mo is the heavy metal enriched in the electric fields of the ESP, while Se contents in high-silicon coal and fly ash in China are both lower than the world average level. The contents of radioactive elements of Th and U in the fine-particle high-silicon fly ash are higher than the average of world coal ash, and the enrichment factors in the fly ash in the four electric fields of the ESP are 1.51 and 1.59, respectively.
  • 加载中
    1. [1]

      LU S Y, ZHANG H M, SOJINU S O, LIU G H, ZHANG J Q, NI H G. Trace elements contamination and human health risk assessment in drinking water from Shenzhen, China[J]. Environ Monit Assess, 2015,187(1)4220.

    2. [2]

      MEHARG A A, RAHMAN M M. Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption[J]. Environ Sci Technol, 2003,37(2):229-234.

    3. [3]

      YANG P T, HASHIMOTO Y, WU W J, HUANG J H, CHIANG P N, WANG S L. Effects of long-term paddy rice cultivation on soil arsenic speciation[J]. J Environ Manage, 2020,254109768.

    4. [4]

      CLARKE L B, SLOSS L L. Trace Elements Emissions from Coal Combustion and Gasification[M]. London: IEA Coal Research, 1992, 111.

    5. [5]

      YAO Z T, JI X S, SARKER P K, TANG J H, GE L Q, XIA M S, XI Y Q. A comprehensive review on the applications of coal fly ash[J]. EarthA-Sci Rev, 2015,141:105-121.

    6. [6]

      LIU Gui-jian, PENG Zi-cheng, YANG Ping-yue, WANG Gui-liang, SONG Chao. Changes of trace elemetns in coal during combustion[J]. J Fuel Chem Technol, 2001,29(2):119-123.

    7. [7]

      FINKELMAN R B, OREM W, CASTRANOVA V, TATU C A, BELKIN H B, ZHENG B, LERCH H E, MAHARAJ S V, BATES A L. Health impacts of coal and coal use: Possible solutions[J]. Int J Coal Geol, 2002,50(1/4):425-443.

    8. [8]

      SAIKIA B K, WARD C R, OLIVEIRA M L S, HOWER J C, LEAO F D, JOHNSTON M N, O'BRYAN A, SHARMA A, BARUAH B P, SILVA L F O. Geochemistry and nano-mineralogy of feed coals, mine overburden, and coal-derived fly ashes from Assam (North-east India): A multi-faceted analytical approach[J]. Int J Coal Geol, 2015,137:19-37.

    9. [9]

      JONES K B, RUPPERT L F, SWANSON S M. Leaching of elements from bottom ash, economizer fly ash, and fly ash from two coal-fired power plants[J]. Int J Coal Geol, 2012,94:337-348.

    10. [10]

      DUTTA B K, KHANRA S, MALLICK D. Leaching of elements from coal fly ash: Assessment of its potential for use in filling abandoned coal mines[J]. Fuel, 2009,88(7):1314-1323.

    11. [11]

      AKAR G, POLAT M, GALECKI G, IPEKOGLU U. Leaching behavior of selected trace elements in coal fly ash samples from Yenikoy coal-fired power plants[J]. Fuel Process Technol, 2012,104:50-56.

    12. [12]

      JEGADEESAN G, AL-ABED , S R, PINTO P. Influence of trace metal distribution on its leachability from coal fly ash[J]. Fuel, 2008,87(10/11):1887-1893.

    13. [13]

      DONG Jing-lan, GENG Xiao, GAO Zheng-yang, LIU Yan-feng. Adsorption mechanism of trace As on the defect sites of SiO2 in fly ash[J]. J Fuel Chem Technol, 2018,46(11):1401-1408.

    14. [14]

      ZHAO S L, DUAN Y F, LIU M, WANG C P, ZHOU Q, LU J H. Effects on enrichment characteristics of trace elements in fly ash by adding halide salts into the coal during CFB combustion[J]. J Energy Inst, 2018,91(2):214-221.

    15. [15]

      LAN Q, HE X Z, COSTA D J, TIAN L W, ROTHMAN N, HU G, MUMFORD J L. Indoor coal combustion emissions, GSTM1 and GSTT1 genotypes, and lung canceer risk: A case-control study in Xun Wei, China[J]. Cancer Epidem Biomar, 2000,9(6):605-608.

    16. [16]

      DAI S F, TIAN L W, CHOU C L, ZHOU Y P, ZHANG M Q, ZHAO L, WANG J M, YANG Z, CAO H Z, REN D Y. Mineralogical and compositional characteristics of Late Permian coals from an area of high lung cancer rate in Xuan Wei, Yunnan, China: Occurrence and origin of quartz and chamosite[J]. Int J Coal Geol, 2008,76(4):318-327.

    17. [17]

      YONG Qi-run, GONG Ben-gen, ZHAO Yong-chun, ZHANG Jun-ying. Carbothermal reduction of Si-Al-Fe-Ca quaternary system in a high-silica coal[J]. J Fuel Chem Technol, 2017,45(11):1296-1302.

    18. [18]

      ZHOU Lin, SHAO Long-yi, LIU Jun-xia, SONG Xiao-yan. Affects of indoor PM10 in Xuanwei on lung cell apoptosis[J]. China Environ Sci, 2010,30(7):1004-1008.

    19. [19]

      FAN Jing-sen, SHAO Long-yi, WANG Jing, WANG Jian-ying, LI Ze-xi. Variations in mass concentrations of indoor inhalable particulates in the coal-burning indoor air in Xuanwei County, Yunnan province[J]. China Environ Sci, 2012,32(8):1379-1383.

    20. [20]

      ZHAO Y C, ZHANG J Y, ZHENG C G. Transformation of aluminum-rich minerals during combustion of a bauxite-bearing Chinese coal[J]. Int J Coal Geol, 2012,94:182-190.

    21. [21]

      YU Dun-xi, XU Ming-hou, YI Fan, HUANG Jian-hui, LI Geng. A review on particle formation mechanisms during coal combstion[J]. Coal Convers, 2004,27(4):7-12.

    22. [22]

      KETRIS M P, YUDOVICH Y E. Estimations of clarkes for carbonaceous biolithes: World averages for trace element contents in black shales and coals[J]. Int J Coal Geol, 2009,78(2):135-148.

    23. [23]

      MARTINEZ-TARAZONA M R, SPEARS D A. The fate of trace elements and bulk minerals in pulverized coal combustion in a power station[J]. Fuel Process Technol, 1996,47(1):79-92.

    24. [24]

      BUHRE B J P, HINKEY J T, GUPTA R P, NELSON P F, WALL T F. Fine ash formation during combustion of pulverised coal-coal property impacts[J]. Fuel, 2006,85(2):185-193.

    25. [25]

      MCLENNAN A R, BRYANT G W, STANMORE B R, WALL T F. Ash formation mechanisms during pf combustion in reducing conditions[J]. Energy Fuels, 2000,14(1):150-159.

    26. [26]

      SENIOR C L, BOOL Ⅲ L E, SRINIVASACHAR S, PEASE B R, PORLE K. Pilot scale study of trace element vaporization and condensation during combustion of a pulverized sub-bituminous coal[J]. Fuel Process Technol, 2000,63:149-165.

  • 加载中
    1. [1]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    2. [2]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    3. [3]

      Tiancheng Yang Yang Yang Chunhua Qu Rui Chu Yue Xia . Wandering through the Kingdom of Chinese Mineral Medicines. University Chemistry, 2024, 39(9): 94-101. doi: 10.12461/PKU.DXHX202403015

    4. [4]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    5. [5]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

    6. [6]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    7. [7]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    8. [8]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    9. [9]

      Jiangjuan Shao Xuan Li Jingdan Weng Xiaolei Chen Fei Xu Yulu Ma Nianguang Li Shizhong Zheng . Improvement in the Experimental Teaching Design of Physical and Chemical Identification and Quantification of Mineral Drugs. University Chemistry, 2024, 39(10): 137-142. doi: 10.3866/PKU.DXHX202312079

    10. [10]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    11. [11]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    12. [12]

      Shuyong Zhang Yaxian Zhu Wenqing Zhang Yuzhi Wang Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026

    13. [13]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    14. [14]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    15. [15]

      Jiaqi Chen Chunhui Luan Yue Sun Qiyun Ma Wangfei Hao Yanjia Wang Xu Wu . Understanding the Dynamics of Heat and Cold through Chemistry: The Interplay of Chemical Energy and Thermal Energy. University Chemistry, 2024, 39(9): 214-223. doi: 10.12461/PKU.DXHX202312020

    16. [16]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    17. [17]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    18. [18]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    19. [19]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    20. [20]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

Metrics
  • PDF Downloads(2)
  • Abstract views(1354)
  • HTML views(356)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return