Citation: Zhai Guoqing, Yu Zongjiang, Jiang Tao, Sun Weizhi. Research Progress in Cleavage of C-N Bond[J]. Chemistry, ;2018, 81(7): 579-586, 597. shu

Research Progress in Cleavage of C-N Bond

  • The C-N bond as a common chemical bond widely exists in many organic molecules and biomacromolecules. The formation and cleavage of C-N bonds play a crucial role in the process of organic reactions and biochemistry. The cleavage of C-N bonds by transition-metal-catalysis, strong oxidization, enzyme catalysis, photocatalysis and other methods were reviewed. The advantages, disadvantages and mechanisms of the described methods were summarized, and the faced challenges and development directions were also discussed.
  • 加载中
    1. [1]

      Q Yang, Q Wang, Z Yu. Chem. Soc. Rev., 2015, 44(8):2305-2329. 

    2. [2]

      S K Tian,Y Gu. Synlett, 2013, 24(10):1170-1185. 

    3. [3]

      N J Turner. Chem. Rev., 2011, 111(7):4073-4087. 

    4. [4]

      D G Hall. J. Am. Chem. Soc., 2005, 127(26):9655.

    5. [5]

      C Grohmann, H G Wang, F Glorius. Org. Lett., 2013, 15(12):3014-3017. 

    6. [6]

      G B Ellison, S J Blanksby. Acc. Chem. Res., 2003, 226(36):255-263.

    7. [7]

      T Miura, M Naruto, K Toda et al. Sci. Rep., 2017, 7(1):1586. 

    8. [8]

      C Zhang, C Sun, B Hu et al. Science, 2017, 355(6323):374-376. 

    9. [9]

      K Ouyang, W Hao, W X Zhang et al. Chem. Rev., 2015, 115(21):12045-12090. 

    10. [10]

      F Akiyama, H Miyazaki, K Kaneda et al. J. Org. Chem., 1980, 45(12):2359-2361. 

    11. [11]

      S Ni, W Zhang, H Mei et al. Org. Lett., 2017, 19(10):2536-2539. 

    12. [12]

      T Chu, S F Vyboishchikov, B M Gabidullin et al. J. Am. Chem. Soc., 2017, 139(26):8804-8807. 

    13. [13]

      R M Laine, D W Thomas, L W Cary. J. Am. Chem. Soc., 1982, 104(6):1763-1765. 

    14. [14]

      Y Shvo, D W Thomas, R M Laine. J. Am. Chem. Soc., 1981, 103(9):2461-2463. 

    15. [15]

      B Xiong, L Zhu, X Feng et al. Eur. J. Org. Chem., 2014, 2014(20):4244-4247. 

    16. [16]

      Y Xie, B Qian, P Xie et al. Adv. Synth. Catal., 2013, 355(7):1315-1322. 

    17. [17]

      Y Zhou, Y Xie, L Yang et al. Tetrahed. Lett., 2013, 54(21):2713-2716. 

    18. [18]

      A Lalitha, K Sivakumar, K Parameswaran et al. Res. Lett. Org. Chem., 2009, 4:1.

    19. [19]

      B Gao, H Huang. Org. Lett., 2017, 19(22):6260-6263. 

    20. [20]

      T Shimada, I Nakamura, Y Yamamoto. J. Am. Chem. Soc., 2004, 126(34):10546-10547. 

    21. [21]

      F Zhao, D Zhang, Y Nian et al. Org. Lett., 2014, 16(19):5124-5127. 

    22. [22]

      M G Zhou, W Z Zhang, S K Tian. Chem. Commum., 2014, 50(93):14531-14534. 

    23. [23]

      A M Trzeciak, Z Ciunik, J J Ziolkowski. Organometallics, 2002, 21(1):132-137. 

    24. [24]

      T Hosokawa, T Kamiike, S I Murahashi et al. Tetrahed. Lett., 2002, 43(51):9323-9325. 

    25. [25]

      J S L Yap, Y Ding, X Y Yang et al. Eur. J. Inorg Chem., 2014, 2014(29):5046-5052. 

    26. [26]

      P Anbarasan, H Neumann, M Beller. Angew. Chem., Int. Ed., 2011, 50(2):519-522. 

    27. [27]

      T J Gong, B Xiao, W M Cheng et al. J. Am. Chem. Soc., 2013, 135(29):10630-10633. 

    28. [28]

      A Roglans, A Pla-Quintana, M Moreno-Mañas. Chem. Rev., 2006, 106(11):4622-4643. 

    29. [29]

      E Wenkert, A-L Han, C-J Jenny. Chem. Commun., 1988, (14):975-976.

    30. [30]

      D Y Wang, M Kawahata, Z K Yang et al. Nat. Commun., 2016, 7:12937. 

    31. [31]

      H M Davies, J S Alford. Chem. Soc. Rev., 2014, 43(15):5151-5162. 

    32. [32]

      S Calet, F Urso, H Alper. J. Am. Chem. Soc., 1989, 111(3):931-934. 

    33. [33]

      C Y Huang, A G Doyle. J. Am. Chem. Soc., 2015, 137(17):5638-5641. 

    34. [34]

      H Alper, C P Perera, F R Ahmed. J. Am. Chem. Soc., 1981, 103(5):1289-1291. 

    35. [35]

      K Okamoto, M Watanabe, A Mashida et al. Synlett, 2013, 24(12):1541-1544. 

    36. [36]

      H Sunden, I Ibrahem, L Eriksson et al. Angew. Chem. Int. Ed., 2005, 44(31):4877-4880. 

    37. [37]

      M M Marques. Angew. Chem. Int. Ed., 2006, 45(3):348-352. 

    38. [38]

      R Cannella, A Clerici, W Panzeri et al. J. Am. Chem. Soc., 2006, 128(16):5358-5359. 

    39. [39]

      D R Kronenthal, C Y Han, M K Taylor. J. Org. Chem., 1982, 13(48):2765-2768.

    40. [40]

      M Zarei, A Jarrahpour, E Ebrahimi et al. Tetrahedron, 2012, 68(27-28):5505-5512. 

    41. [41]

      Z Zhang, D Zheng, Y Wan et al. J. Org. Chem., 2018, 83(3):1369-1376. 

    42. [42]

      C Zhang, C Sun, B Hu et al. Science, 2017, 355(6323):374-376. 

    43. [43]

      Y Xu, Q Wang, C Shen et al. Nature, 2017, 549(7670):78-81. 

    44. [44]

      M A Patrauchan, P J Oriel. J. Appl. Microbiol., 2003, 94(2):266-272. 

    45. [45]

      C M Beveridge, A C S Parr, M J Smith et al. Environ. Pollut., 1998, 103(1):31-36. 

    46. [46]

      E Ertekin, K T Konstantinidis, U Tezel. Environ. Sci. Technol., 2017, 51(1):175-181. 

    47. [47]

      S H Zeisel, K A da Costa. Nutr. Rev., 2009, 67(11):615-623. 

    48. [48]

      Y Chen, N A Patel, A Crombie et al. PNAS, 2011, 108(43):17791-17796. 

    49. [49]

      S Craciun, E P Balskus. PNAS, 2012, 109(52):21307-21312. 

    50. [50]

      S Craciun, J A Marks, E P Balskus. ACS Chem. Biol., 2014, 9(7):1408-1413. 

    51. [51]

      S Bodea, M A Funk, E P Balskus et al. Cell Chem. Biol., 2016, 23(10):1206-1216. 

    52. [52]

      N Asano, M Takeuchi, K Ninomiya et al. J. Antibiot., 1984, 37(8):859-867. 

    53. [53]

      J F Zhang, Y G Zheng, Z Q Liu et al. Appl. Microbiol. Biotechnol., 2007, 73(6):1275-1281. 

    54. [54]

      J G Kim, J C Joo, S K Kim et al. Biotechnol. Bioprocess Eng., 2011, 16(2):366-373. 

    55. [55]

      P Wang, W Lu, D Devalankar et al. Org. Lett., 2015, 17(1):170-172. 

    56. [56]

      S Mor, S N Dhawan. Chem. Biol. Interf., 2016, 6:243-256.

    57. [57]

      J Zhang, Z X Chen, T Du et al. Org. Lett., 2016, 18(19):4872-4875. 

    58. [58]

      S D Marin, T Martens, C Mioskowski et al. J. Org. Chem., 2005, 70(25):10592-10595. 

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    7. [7]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    8. [8]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    9. [9]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    10. [10]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    14. [14]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    15. [15]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    16. [16]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    17. [17]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    18. [18]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    19. [19]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    20. [20]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

Metrics
  • PDF Downloads(319)
  • Abstract views(10013)
  • HTML views(4953)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return