Citation: Zhai Guoqing, Yu Zongjiang, Jiang Tao, Sun Weizhi. Research Progress in Cleavage of C-N Bond[J]. Chemistry, ;2018, 81(7): 579-586, 597. shu

Research Progress in Cleavage of C-N Bond

  • The C-N bond as a common chemical bond widely exists in many organic molecules and biomacromolecules. The formation and cleavage of C-N bonds play a crucial role in the process of organic reactions and biochemistry. The cleavage of C-N bonds by transition-metal-catalysis, strong oxidization, enzyme catalysis, photocatalysis and other methods were reviewed. The advantages, disadvantages and mechanisms of the described methods were summarized, and the faced challenges and development directions were also discussed.
  • 加载中
    1. [1]

      Q Yang, Q Wang, Z Yu. Chem. Soc. Rev., 2015, 44(8):2305-2329. 

    2. [2]

      S K Tian,Y Gu. Synlett, 2013, 24(10):1170-1185. 

    3. [3]

      N J Turner. Chem. Rev., 2011, 111(7):4073-4087. 

    4. [4]

      D G Hall. J. Am. Chem. Soc., 2005, 127(26):9655.

    5. [5]

      C Grohmann, H G Wang, F Glorius. Org. Lett., 2013, 15(12):3014-3017. 

    6. [6]

      G B Ellison, S J Blanksby. Acc. Chem. Res., 2003, 226(36):255-263.

    7. [7]

      T Miura, M Naruto, K Toda et al. Sci. Rep., 2017, 7(1):1586. 

    8. [8]

      C Zhang, C Sun, B Hu et al. Science, 2017, 355(6323):374-376. 

    9. [9]

      K Ouyang, W Hao, W X Zhang et al. Chem. Rev., 2015, 115(21):12045-12090. 

    10. [10]

      F Akiyama, H Miyazaki, K Kaneda et al. J. Org. Chem., 1980, 45(12):2359-2361. 

    11. [11]

      S Ni, W Zhang, H Mei et al. Org. Lett., 2017, 19(10):2536-2539. 

    12. [12]

      T Chu, S F Vyboishchikov, B M Gabidullin et al. J. Am. Chem. Soc., 2017, 139(26):8804-8807. 

    13. [13]

      R M Laine, D W Thomas, L W Cary. J. Am. Chem. Soc., 1982, 104(6):1763-1765. 

    14. [14]

      Y Shvo, D W Thomas, R M Laine. J. Am. Chem. Soc., 1981, 103(9):2461-2463. 

    15. [15]

      B Xiong, L Zhu, X Feng et al. Eur. J. Org. Chem., 2014, 2014(20):4244-4247. 

    16. [16]

      Y Xie, B Qian, P Xie et al. Adv. Synth. Catal., 2013, 355(7):1315-1322. 

    17. [17]

      Y Zhou, Y Xie, L Yang et al. Tetrahed. Lett., 2013, 54(21):2713-2716. 

    18. [18]

      A Lalitha, K Sivakumar, K Parameswaran et al. Res. Lett. Org. Chem., 2009, 4:1.

    19. [19]

      B Gao, H Huang. Org. Lett., 2017, 19(22):6260-6263. 

    20. [20]

      T Shimada, I Nakamura, Y Yamamoto. J. Am. Chem. Soc., 2004, 126(34):10546-10547. 

    21. [21]

      F Zhao, D Zhang, Y Nian et al. Org. Lett., 2014, 16(19):5124-5127. 

    22. [22]

      M G Zhou, W Z Zhang, S K Tian. Chem. Commum., 2014, 50(93):14531-14534. 

    23. [23]

      A M Trzeciak, Z Ciunik, J J Ziolkowski. Organometallics, 2002, 21(1):132-137. 

    24. [24]

      T Hosokawa, T Kamiike, S I Murahashi et al. Tetrahed. Lett., 2002, 43(51):9323-9325. 

    25. [25]

      J S L Yap, Y Ding, X Y Yang et al. Eur. J. Inorg Chem., 2014, 2014(29):5046-5052. 

    26. [26]

      P Anbarasan, H Neumann, M Beller. Angew. Chem., Int. Ed., 2011, 50(2):519-522. 

    27. [27]

      T J Gong, B Xiao, W M Cheng et al. J. Am. Chem. Soc., 2013, 135(29):10630-10633. 

    28. [28]

      A Roglans, A Pla-Quintana, M Moreno-Mañas. Chem. Rev., 2006, 106(11):4622-4643. 

    29. [29]

      E Wenkert, A-L Han, C-J Jenny. Chem. Commun., 1988, (14):975-976.

    30. [30]

      D Y Wang, M Kawahata, Z K Yang et al. Nat. Commun., 2016, 7:12937. 

    31. [31]

      H M Davies, J S Alford. Chem. Soc. Rev., 2014, 43(15):5151-5162. 

    32. [32]

      S Calet, F Urso, H Alper. J. Am. Chem. Soc., 1989, 111(3):931-934. 

    33. [33]

      C Y Huang, A G Doyle. J. Am. Chem. Soc., 2015, 137(17):5638-5641. 

    34. [34]

      H Alper, C P Perera, F R Ahmed. J. Am. Chem. Soc., 1981, 103(5):1289-1291. 

    35. [35]

      K Okamoto, M Watanabe, A Mashida et al. Synlett, 2013, 24(12):1541-1544. 

    36. [36]

      H Sunden, I Ibrahem, L Eriksson et al. Angew. Chem. Int. Ed., 2005, 44(31):4877-4880. 

    37. [37]

      M M Marques. Angew. Chem. Int. Ed., 2006, 45(3):348-352. 

    38. [38]

      R Cannella, A Clerici, W Panzeri et al. J. Am. Chem. Soc., 2006, 128(16):5358-5359. 

    39. [39]

      D R Kronenthal, C Y Han, M K Taylor. J. Org. Chem., 1982, 13(48):2765-2768.

    40. [40]

      M Zarei, A Jarrahpour, E Ebrahimi et al. Tetrahedron, 2012, 68(27-28):5505-5512. 

    41. [41]

      Z Zhang, D Zheng, Y Wan et al. J. Org. Chem., 2018, 83(3):1369-1376. 

    42. [42]

      C Zhang, C Sun, B Hu et al. Science, 2017, 355(6323):374-376. 

    43. [43]

      Y Xu, Q Wang, C Shen et al. Nature, 2017, 549(7670):78-81. 

    44. [44]

      M A Patrauchan, P J Oriel. J. Appl. Microbiol., 2003, 94(2):266-272. 

    45. [45]

      C M Beveridge, A C S Parr, M J Smith et al. Environ. Pollut., 1998, 103(1):31-36. 

    46. [46]

      E Ertekin, K T Konstantinidis, U Tezel. Environ. Sci. Technol., 2017, 51(1):175-181. 

    47. [47]

      S H Zeisel, K A da Costa. Nutr. Rev., 2009, 67(11):615-623. 

    48. [48]

      Y Chen, N A Patel, A Crombie et al. PNAS, 2011, 108(43):17791-17796. 

    49. [49]

      S Craciun, E P Balskus. PNAS, 2012, 109(52):21307-21312. 

    50. [50]

      S Craciun, J A Marks, E P Balskus. ACS Chem. Biol., 2014, 9(7):1408-1413. 

    51. [51]

      S Bodea, M A Funk, E P Balskus et al. Cell Chem. Biol., 2016, 23(10):1206-1216. 

    52. [52]

      N Asano, M Takeuchi, K Ninomiya et al. J. Antibiot., 1984, 37(8):859-867. 

    53. [53]

      J F Zhang, Y G Zheng, Z Q Liu et al. Appl. Microbiol. Biotechnol., 2007, 73(6):1275-1281. 

    54. [54]

      J G Kim, J C Joo, S K Kim et al. Biotechnol. Bioprocess Eng., 2011, 16(2):366-373. 

    55. [55]

      P Wang, W Lu, D Devalankar et al. Org. Lett., 2015, 17(1):170-172. 

    56. [56]

      S Mor, S N Dhawan. Chem. Biol. Interf., 2016, 6:243-256.

    57. [57]

      J Zhang, Z X Chen, T Du et al. Org. Lett., 2016, 18(19):4872-4875. 

    58. [58]

      S D Marin, T Martens, C Mioskowski et al. J. Org. Chem., 2005, 70(25):10592-10595. 

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    3. [3]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    4. [4]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    5. [5]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    6. [6]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    7. [7]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

    8. [8]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    12. [12]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    13. [13]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    14. [14]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    15. [15]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    16. [16]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    17. [17]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    18. [18]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    19. [19]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    20. [20]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

Metrics
  • PDF Downloads(330)
  • Abstract views(10633)
  • HTML views(5185)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return