Citation: ZHAO Si-lan, LIU Hui-min, HU Hong-yun, HUANG Yong-da, YUAN Bing, DENG Shuang, JIA Jian-li. Review on the fate of antimony and its emission control technologies during coal combustion[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(12): 1476-1487. shu

Review on the fate of antimony and its emission control technologies during coal combustion

  • Corresponding author: DENG Shuang, dengshuang@craes.org.cn
  • Received Date: 11 September 2020
    Revised Date: 27 October 2020

    Fund Project: National Natural Science Foundation of China 52006078the National Key R & D Program of China 2018YFB0605101The project was supported by the National Key R & D Program of China (2018YFB0605101) and National Natural Science Foundation of China(52006078)

Figures(5)

  • Antimony is a trace element with potential toxicity. As a major source of atmospheric antimony pollution in China, the fate of antimony released during coal combustion has been attracting increasing concern. In this study, the contents and occurrence modes of antimony in coals were summarized, with subsequent discussions on the vaporization and transformation behavior of antimony in the coal combustion process. The partitioning of antimony in bottom ash, size-segregated fly ash particles as well as flue gas were also presented. Regarding the potential control methods for antimony emission, technologies facing pre-combustion, combustion and post-combustion stages were proposed respectively. It aims to provide a guideline for understanding the behavior of antimony migration and emission control during coal combustion.
  • 加载中
    1. [1]

      HE M, WANG X, WU F, FU Z. Antimony pollution in China[J]. Sci Total Environ, 2012,421-422:41-50.

    2. [2]

      LI J, ZHENG B, HE Y, ZHOU Y, CHEN X, RUAN S, YANG Y, DAI C, TANG L. Antimony contamination, consequences and removal techniques: A review[J]. Ecotox Environ Safe, 2018,156:125-134.

    3. [3]

      TIAN H, ZHOU J, ZHU C, ZHAO D, GAO J, HAO J, HE M, LIU K, WANG K, HUA S. A comprehensive global inventory of atmospheric antimony emissions from anthropogenic activities, 1995-2010[J]. Environ Sci Technol, 2014,48(17):10235-10241.

    4. [4]

      www.stats.gov.cn/tjsj/zxfb/202002/t20200228_1728913.html (National Bureau of Statistics of the People's Republic of China. Statistical Communique of the People's Republic of China on the 2019[R]. National Economic and Social Development. 2019.www.stats.gov.cn/tjsj/zxfb/202002/t20200228_1728913.html.

    5. [5]

      TIAN H Z, ZHAO D, HE M C, WANG Y, CHENG K. Temporal and spatial distribution of atmospheric antimony emission inventories from coal combustion in China[J]. Environ Pollut, 2011,159(6):1613-1619.

    6. [6]

      National emission standards for hazardous air pollutants from coaland oil-fired electric utility steam generating units and standards of performance for fossil-fuel-fired electric utility, industrial-commercial- institutional, and small industrial[S]. Federal Register, 2016.

    7. [7]

      HE Meng-chang, WAN Hong-yan. Distribution, speciation, toxicity and bioavailability of antimony in the environment[J]. Prog Chem, 2004,16(1):131-135.

    8. [8]

      SWAINE D J. Trace Elements in Coal[J]. Butterworth, London, 1990.

    9. [9]

      QI C, LIU G, CHOU C, ZHENG L. Environmental geochemistry of antimony in Chinese coals[J]. Sci Total Environ, 2008,389(2/3):225-234.

    10. [10]

      REN D, ZHAO F, WANG Y, YANG S. Distributions of minor and trace elements in Chinese coals[J]. Int J Coal Geol, 1999,40(2):109-118.

    11. [11]

      ZHAO Ji-yao, TANG Xiu-yi, HUANG Wen-hui. Abundance of trace elements in coal of China[J]. Coal Geol China, 2002,14(S1):6-14.

    12. [12]

      BAI Xiang-fei, LI Wen-hua, CHEN Ya-fei, JIANG ying. The general distributions of trace elements in Chinese coals[J]. Coal Quality Technol, 2007(1):1-4.

    13. [13]

      DAI S, ZHOU Y, REN D, WANG X, LI D, ZHAO L. Geochemistry and mineralogy of the Late Permian coals from the Songzo Coalfield, Chongqing, southwestern China[J]. Sci in China Series D: Earth Sci, 2007,50(5):678-688.

    14. [14]

      SIA S, ABDULLAH W H. Enrichment of arsenic, lead, and antimony in Balingian coal from Sarawak, Malaysia: Modes of occurrence, origin, and partitioning behaviour during coal combustion[J]. Int J Coal Geol, 2012,101:1-15.

    15. [15]

      DALE L, LAVRENCIC S. Trace elements in Australian export thermal coals[J]. Aust Coal J, 1993,39:17-21.

    16. [16]

      ITO S, YOKOYAMA T, ASAKURA K. Emissions of mercury and other trace elements from coal-fired power plants in Japan[J]. Sci Total Environ, 2006,368(1):397-402.

    17. [17]

      FINKELMAN R B. Trace and minor elements in coal[C]. New York: Plenum press, 1993: 593-607.

    18. [18]

      KETRIS M P, YUDOVICH Y E. Estimations of clarkes for carbonaceous biolithes: World averages for trace element contents in black shales and coals[J]. Int J Coal Geol, 2009,78(2):135-148.

    19. [19]

      SENIOR C L, ZENG T, CHE J, AMES M R, SAROFIM A F, OLMEZ I, HUGGINS F E, SHAH N, HUFFMAN G P, KOLKER A, MROCZKOWSKI S, PALMER C, FINKELMAN R. Distribution of trace elements in selected pulverized coals as a function of particle size and density[J]. Fuel Process Technol, 2000,63(2):215-241.

    20. [20]

      SIA S, ABDULLAH W H. Concentration and association of minor and trace elements in Mukah coal from Sarawak, Malaysia, with emphasis on the potentially hazardous trace elements[J]. Int J Coal Geol, 2011,88(4):179-193.

    21. [21]

      LIANG Hu-zhen, ZENG Fan-gui, XIANG Jian-hua, LI Mei-fen. Geochemical characteristics and inorganic organic affinity analysis of trace elements in Yimin lignite[J]. J Fuel Chem Technol, 2013,41(10):1173-1183.

    22. [22]

      WU Jiang-ping. Study on trace elements in coal of Eastern Huainan: coalfield and its environmental significance[D]. Huainan: Anhui University of Science and Technology, 2006.)

    23. [23]

      QI Cui-cui, LIU Gui-jian, KUANG Wu. Distribution characteristics and enrichment genesis of antimony in Huainan coal[J]. Coal Geol China, 2016,28(12):9-13.

    24. [24]

      ZHAO Feng-hua, PENG Su-ping, LI Da-hua, TANG Yue-gang, REN De-yi, XU De-wei. Quantitative study on organic affinity of some elements in low rank coal[J]. J China Univ Min Technol, 2003,22(1):21-25.

    25. [25]

      YANG Jian-ye. Acid removal rate and element periodicity of trace elements in coal—a case study of No.5 coal seam of Late Paleozoic in Weibei area[J]. J Fuel Chem Technol,, 2010,38(5):522-527.

    26. [26]

      GOODARZI F, SWAINE D J. Chalcophile elements in western Canadian coals[J]. Int J Coal Geol, 1993,24(1):281-292.

    27. [27]

      FINKELMAN R B, ARUSCAVAGE P J. Concentration of some platinum-group metals in coal[J]. Int J Coal Geol, 1981,1(2):95-99.

    28. [28]

      FINKELMAN R B, PALMER C A, KRASNOW M R, ARUSCAVAGE P J, SELLERS G A, DULONG F T. Combustion and leaching behavior of elements in the Argonne Premium Coal Samples[J]. Energy Fuels, 1990,4(6):755-766.

    29. [29]

      DAI S, ZOU J, JIANG Y, WARD C R, WANG X, LI T, XUE W, LIU S, TIAN H, SUN X, ZHOU D. Mineralogical and geochemical compositions of the Pennsylvanian coal in the Adaohai Mine, Daqingshan Coalfield, Inner Mongolia, China: Modes of occurrence and origin of diaspore, gorceixite, and ammonian illite[J]. Int J Coal Geol, 2012,94:250-270.

    30. [30]

      DAI S, ZENG R, SUN Y. Enrichment of arsenic, antimony, mercury, and thallium in a Late Permian anthracite from Xingren, Guizhou, Southwest China[J]. Int J Coal Geol, 2006,66(3):217-226.

    31. [31]

      FENG Xin-bin, NI Jian-yu, HONG Ye-tang, ZHU Jian-ming, ZHOU Bin. Preliminary study on the distribution of volatile and semi volatile trace elements in coal of Guizhou Province[J]. Environ Chem, 1998,17(2):3-5.

    32. [32]

      ZHUANG Xin-guo, GONG Jia-qiang, WANG Zhan-qi, ZENG Rong-shu, XU Wen-dong. Trace element characteristics of Late Permian coal in Liuzhi and Shuicheng coalfields, Guizhou Province[J]. Geol Sci Inform, 2001,20(3):53-58.

    33. [33]

      FINKELMAN R B, PALMER C A, WANG P. Quantification of the modes of occurrence of 42 elements in coal[J]. Int J Coal Geol, 2018,185:138-160.

    34. [34]

      ZHOU C, LIU G, XU Z, SUN H, KWAN SING LAM P. Retention mechanisms of ash compositions on toxic elements (Sb, Se and Pb) during fluidized bed combustion[J]. Fuel, 2018,213:98-105.

    35. [35]

      ZHUANG Xin-guo, ZENG Rong-shu, XU Wen-dong. Trace elements in No.9 coal seam of Antaibao open pit mine, Pingshuo, Shanxi province[J]. Earth Sci, 1998,23(6):3-5.

    36. [36]

      DAI S, REN D, TANG Y, YUE M, HAO L. Concentration and distribution of elements in Late Permian coals from western Guizhou province, China[J]. Int J Coal Geol, 2005,61(1/2):119-137.

    37. [37]

      REN De-yi, XU De-wei, ZHANG Jun-ying, ZHAO Feng-hua, LI Gui-zhi, XIE Lie-wen. Distribution characteristics of associated elements in coal of Shenbei coalfield[J]. J China Univ Min Technol, 1999,28(1):3-5.

    38. [38]

      HU Guang-qing. Evaluation of environmental geochemistry and cleanliness grade of typical harmful elements in coal of Huainan coalfield[D]. Hefei: China University of Science and Technology, 2019.

    39. [39]

      CLARKE L B. The fate of trace elements during coal combustion and gasification: An overview[J]. Fuel, 1993,72(6):731-736.

    40. [40]

      MENG Yun. Theoretical and experimental study on emission and control of harmful elements and submicron particles during coal combustion[D]. Nanjing: Nanjing University of Science and Technology, 2004.

    41. [41]

      VASSILEV S V, BRAEKMAN-DANHEUX C, LAURENT P, THIEMANN T, FONTANA A. Behaviour, capture and inertization of some trace elements during combustion of refuse-derived char from municipal solid waste[J]. Fuel, 1999,78(10):1131-1145.

    42. [42]

      ZHANG Jun-ying, ZHENG Chu-guang, LIU Jing, LIU Hai-ming. Experimental study on volatility trace heavy metals in coal combustion[J]. J Eng Thermophys-Rus, 2003,24(6):1043-1046.

    43. [43]

      WANG Xin, YAO Duo-xi, FENG Qi-yan. Distribution characteristics and environmental impact of heavy metals during lignite combustion[J]. Acta Sci Circumstantiae, 2013,33(5):1389-1395.

    44. [44]

      DÍAZ-SOMOANO M, MARTÍNEZ-TARAZONA M R. Trace element evaporation during coal gasification based on a thermodynamic equilibrium calculation approach[J]. Fuel, 2003,82(2):137-145.

    45. [45]

      WANG Quan-hai, QIU Jian-rong, WEN Cun, KONG Fan-hai, XIONG Quan-jun, WU Hui, ZHANG Xiao-ping, LIU Hao. A experimental and simulative study on the morpho-logical transformation of the trace element under oxygen-combustion atmosphere[J]. J Eng Thermophys, 2006,27(S2):199-202.

    46. [46]

      FILELLA M, HENNEBERT P, OKKENHAUG G, TURNER A. Occurrence and fate of antimony in plastics[J]. J Hazard Mater, 2020,390121764.

    47. [47]

      FU B, LIU G, MIAN M M, SUN M, WU D. Characteristics and speciation of heavy metals in fly ash and FGD gypsum from Chinese coal-fired power plants[J]. Fuel, 2019,251:593-602.

    48. [48]

      ZENG T, SAROFIM A F, SENIOR C L. Vaporization of arsenic, selenium and antimony during coal combustion[J]. Combust Flame, 2001,126(3):1714-1724.

    49. [49]

      JAMES D W, KRISHNAMOORTHY G, BENSON S A, SEAMES W S. Modeling trace element partitioning during coal combustion[J]. Fuel Process Technol, 2014,126:284-297.

    50. [50]

      BARNES D I. Understanding pulverised coal, biomass and waste combustion-A brief overview[J]. Appl Therm Eng, 2015,74:89-95.

    51. [51]

      LU Jin-cheng, DUAN Yu-feng, ZHAO Shi-lin, BAI Li-yi, CHEN Cong, LI Chun-feng, TAO jun. Experimental study on emission characteristics of trace elements in 600MW coal fired power plant[J]. China Environ Sci, 2018,38(12):4444-4450.

    52. [52]

      CHE Kai, ZHENG Qing-yu, HAN Zhong-ge, CHEN Chong-ming, YU Jin-xing. Research on Co-removal and Emission of Trace Elements in the Coal-Fired Power Plant[J]. Electr Pow, 2019,52(4):161-166.

    53. [53]

      ZHAO Shi-lin, DUAN Yu-feng, DING Yan-jun, GU Xiao-bing, DU Ming-sheng, YAO ting, CHEN Cong, LIU Meng, LU Jian-hong. Distribution, co-removal and emission characteristic of trace elements in 320 MW coal-fired power plant[J]. CIESC J, 2017,68(7):2910-2917.

    54. [54]

      WANG J, ZHANG Y, LIU Z, GU Y, NORRIS P, XU H, PAN W. Coeffect of air pollution control devices on trace element emissions in an ultralow emission coal-fired power plant[J]. Energy Fuels, 2018,33(1):248-256.

    55. [55]

      NODELMAN I G, PISUPATI S V, MILLER S F, SCARONI A W. Partitioning behavior of trace elements during pilot-scale combustion of pulverized coal and coal-water slurry fuel[J]. J Hazard Mater, 2000,74(1):47-59.

    56. [56]

      QI Cui-cui, LIU Gui-jian. The distribution, enrichment and emissions of antimony in Huainan coal-fired power plant[J]. Environ Sci Technol, 2016,39(S1):243-246.

    57. [57]

      FU B, LIU G, SUN M, HOWER J C, MIAN M M, WU D, WANG R, HU G. Emission and transformation behavior of minerals and hazardous trace elements (HTEs) during coal combustion in a circulating fluidized bed boiler[J]. Environ Pollut, 2018,242:1950-1960.

    58. [58]

      WEI Xiao-fei, ZHANG Guo-ping, LI Ling, XIANG Meng, CAI Yong-bing. Distribution and enrichment of trace elements in coal combustion products from southwestern guizhou[J]. Environ Sci, 2012,33(5):1457-1462.

    59. [59]

      LUTTRELL G H, KOHMUENCH J N, YOON R. An evaluation of coal preparation technologies for controlling trace element emissions[J]. Fuel Process Technol, 2000,65-66:407-422.

    60. [60]

      TIAN He-zhong, ZHAO Dan, HE Meng-chang, WANG Yan, CHENG Ke, QU Yi-ping. Atmospheric antimony emission inventories from coal combustion in China in 2005[J]. China Environ Sci, 2010,30(11):1550-1557.

    61. [61]

      VASSILEV S V, BRAEKMAN-DANHEUX C, LAURENT P, THIEMANN T, FONTANA A. Behaviour, capture and inertization of some trace elements during combustion of refuse-derived char from municipal solid waste[J]. Fuel, 1999,78(10):1131-1145.

    62. [62]

      YAO Duo-xi, ZHI Xia-chen, WANG Xin, ZHENG Bao-shan. Study on the effect of kaolin on the emission of trace elements during staged combustion of coal[J]. Acta Sci Circumstantiae, 2004,24(2):210-214.

    63. [63]

      LI Xiao-le, SUN Hai-cheng, DUAN Lun-bo, ZHAO Chang-sui. Influence of different additives/absorbents on migration of trace elements in CFB combustion[J]. J Combust Sci Technol, 2016,22(1):45-49.

    64. [64]

      JIAO F, NINOMIYA Y, ZHANG L, YAMADA N, SATO A, DONG Z. Effect of coal blending on the leaching characteristics of arsenic in fly ash from fluidized bed coal combustion[J]. Fuel Process Technol, 2013,106:769-775.

    65. [65]

      ZHANG S, JIANG X, LIU B, LV G, JIN Y, YAN J. Co-combustion of bituminous coal and pickling sludge in a drop-tube furnace: Thermodynamic study and experimental data on the distribution of Cr, Ni, Mn, As, Cu, Sb, Pb, Cd, Zn, and Sn[J]. Energy Fuels, 2017,31(3):3019-3028.

    66. [66]

      GOGEBAKAN Z, SELÇUK N. Trace elements partitioning during co-firing biomass with lignite in a pilot-scale fluidized bed combustor[J]. J Hazard Mater, 2009,162(2/3):1129-1134.

    67. [67]

      NZIHOU A, STANMORE B R. The formation of aerosols during the co-combustion of coal and biomass[J]. Waste Biomass Valori, 2015,6(6):947-957.

    68. [68]

      MEIJ R, TE WINKEL H. The emissions of heavy metals and persistent organic pollutants from modern coal-fired power stations[J]. Atmos Environ, 2007,41(40):9262-9272.

    69. [69]

      ZHAO S, DUAN Y, TAN H, LIU M, WANG X, WU L, WANG C, LV J, YAO T, SHE M, TANG H. Migration and emission characteristics of trace elements in a 660 MW coal-fired power plant of china[J]. Energy Fuels, 2016,30(7):5937-5944.

    70. [70]

      ZHU C, TIAN H, CHENG K, LIU K, WANG K, HUA S, GAO J, ZHOU J. Potentials of whole process control of heavy metals emissions from coal-fired power plants in China[J]. J Clean Prod, 2016,114:343-351.

    71. [71]

      LU Yuan-ming. Coal fired power plant wet electric dust removal technology research and Application[D]. Baoding: North China Electric Power University, 2015.

    72. [72]

      RUAN Ren-hui, TAN Hou-zhang, DUAN Yu-feng, DU Yong-le, LIU He-xin, XIAO Jia-fan, YANG Fu-xin, ZHANG Peng. Particle removal characteristics of an ultra-low emission coal-fired power plant[J]. Environ Sci, 2019,40(1):126-134.

    73. [73]

      WANG Jian-peng, DUAN Lu, WANG Nai-ji, LI Jie. Research progress on the effect of flue gas desulfurization technonlogy of coal-fired boiler on particulate matter emission[J]. Clean Coal Technol, 2020,26(2):34-42.

    74. [74]

      RUAN Ren-hui, TAN Hou-zhang, DUAN Yu-feng, DU Yong-le, LIU He-xin, XIAO Jia-fan, YANG Fu-xin, ZHANG Peng. Particle removal characteristics of an ultra-low emission coal-fired power plant[J]. Environ Sci, 2019,40(1):126-134.

  • 加载中
    1. [1]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    2. [2]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    3. [3]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    4. [4]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    5. [5]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    6. [6]

      Shuyong Zhang Yaxian Zhu Wenqing Zhang Yuzhi Wang Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026

    7. [7]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

    8. [8]

      Zhongyun Wu Li Wang Xiaokui Wang Wanchun Zhu Yuan Chun Fuping Tian Yongmei Liu Yunshan Bai Hong Yuan Yufeng Li Shu'e Song Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Pressure. University Chemistry, 2025, 40(5): 137-147. doi: 10.12461/PKU.DXHX202503027

    9. [9]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    10. [10]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    11. [11]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    12. [12]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    13. [13]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    14. [14]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    15. [15]

      Yidan Jing Xiaomin Zhang Nan Xu . Design and Practice of Chemical Science Popularization Experiments Based on the Concept of Controlling Variables: Taking the “Recovery of Silver from Silver-Containing Wastewater” Science Popularization Project as an Example. University Chemistry, 2025, 40(4): 346-352. doi: 10.12461/PKU.DXHX202405146

    16. [16]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    17. [17]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

Metrics
  • PDF Downloads(12)
  • Abstract views(1261)
  • HTML views(228)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return