Citation: LÜ Qiao-ya, LI Long-long, LI Ya-fang, MAO Jin-hua, CHEN Ting, ZHAO Yan-jie, LIU Li-qiang, LI Lu-yan. First-principles study on the photocatalytic properties of Cr-doped Cu2O[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(1): 98-103. shu

First-principles study on the photocatalytic properties of Cr-doped Cu2O

  • Corresponding author: LI Lu-yan, liluyan@sdjzu.edu.cn
  • Received Date: 16 July 2018
    Revised Date: 26 November 2018

    Fund Project: Doctoral Foundation of Shandong Jianzhu University XNBS1535the National Natural Science Foundation of China 21603122Doctoral Foundation of Shandong Jianzhu University XNBS1538The project was supported by the National Natural Science Foundation of China(21603122), Natural Science Foundation of Shandong Province of China (ZR2016FB03) and Doctoral Foundation of Shandong Jianzhu University (XNBS1266, XNBS1535, XNBS1538)Natural Science Foundation of Shandong Province of China ZR2016FB03Doctoral Foundation of Shandong Jianzhu University XNBS1266

Figures(8)

  • It was found in recent years that inorganic semiconductor materials exhibited excellent photocatalytic performance and had broad application prospects in environmental treatment and energy conversion; in this aspect, Cu2O semiconductor has attracted extensive attention owing its superior adsorption capacity for oxygen and high photo absorption coefficient. Considering that doping in Cu2O could improve its photocatalytic efficiency in the visible region, in this work, the formation energy, electronic structure, and photocatalytic properties of Cu2O doped with different concentrations of Cr were investigated by first-principle calculation. The results indicate that intrinsic Cu2O shows semiconductor properties and the absorption of visible-light is weak; after doping with different concentrations of Cr and in different positions, the Cr-doped Cu2O system are all stable and show metallic characteristics. Compared with intrinsic Cu2O, the absorption peaks of Cr-doped Cu2O in the visible-light range are enhanced. When two Cr atoms are doped in the nearest neighbor configuration, the absorption coefficient in the visible-light region is the largest, with the strongest photocatalytic efficiency. The density of states shows that the visible-light absorption of Cr-doped Cu2O systems is mainly induced by the intra-band transition of electrons in Cr 3d states. The doping concentration and configuration influence mainly the physical properties of Cu2O in the long wavelength range, but have little effect in the short wavelength range. Therefore, an increase in the doping concentration of Cr dopants and a change in the configuration can improve its photocatalytic efficiency in the visible region, and then promote the progress of Cu2O application in photocatalysis.
  • 加载中
    1. [1]

      SU J, LIN Z, CHEN G. Ultrasmall graphitic carbon nitride quantum dots decorated self-organized TiO2 nanotube arrays with highly efficient photoelectrochemical activity[J]. Appl Catal B:Environ, 2016,186:127-135. doi: 10.1016/j.apcatb.2015.12.050

    2. [2]

      LI C, CHEN G, SUN J, RAO J, HAN Z, HU Y, XING W, ZHANG C. Doping effect of phosphate in Bi2WO6, and universal improved photocatalytic activity for removing various pollutants in water[J]. Appl Catal B:Environ, 2016,188:39-47. doi: 10.1016/j.apcatb.2016.01.054

    3. [3]

      LOU S, JIA X, WANG Y, ZHOU S. Template-assisted in-situ synthesis of porous AgBr/Ag composite microspheres as highly efficient visible-light photocatalyst[J]. Appl Catal B:Environ, 2015,176:586-593.  

    4. [4]

      HE Y R, YAN F F, YU H Q, YUAN S J, TONG Z H, SHENG G P. Hydrogen production in a light-driven photoelectrochemical cell[J]. Appl Energy, 2014,113(1):164-168.  

    5. [5]

      OSTERLOH F E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting[J]. Chem Soc Rev, 2013,42(6):2294-2320. doi: 10.1039/C2CS35266D

    6. [6]

      GAO Xin, LIU Xiang-xuan, WANG Xuan-jun, ZHU Zuo-ming. Progress in research on modified Cu2O photocatalyst[J]. J Mater Eng, 2016,44(1):120-128.  

    7. [7]

      JIANG D, XUE J, WU L, ZHOU W, ZHANG Y, LI X. Photocatalytic performance enhancement of CuO/Cu2O heterostructures for photodegradation of organic dyes:Effects of CuO morphology[J]. Appl Catal B:Environ, 2017,211:199-204. doi: 10.1016/j.apcatb.2017.04.034

    8. [8]

      PANG H, GAO F, LU Q. Glycine-assisted double-solvothermal approach for various cuprous oxide structures with good catalytic activities[J]. CrystEngCommun, 2010,12(2):406-412. doi: 10.1039/B904705K

    9. [9]

      DAS K, SHARMA S N, KUMAR M, DE S K. Luminescence properties of the solvothermally synthesized blue light emitting Mn doped Cu2O nanoparticles[J]. J Appl Phys, 2010,107(2):433-147.  

    10. [10]

      LU Y M, CHEN C Y, MING H L. Effect of hydrogen plasma treatment on the electrical properties of sputtered N-doped cuprous oxide films[J]. Thin Solid Films, 2005,480(1-3):482-485.  

    11. [11]

      TANG Ai-dong, HU Li-qin, WANG Duo. Photo-catalytic property of Cu2O prepared by roomtemperature liquid phase redox method[J]. J Funct Mater, 2011,42(11):2034-2037.  

    12. [12]

      LI L, CHENG Y, WANG W, REN S, YANG Y, LUO X, LIU H. Effects of copper and oxygen vacancies on the ferromagnetism of Mn-and Co-doped Cu2O[J]. Solid State Commun, 2011,151(21):1583-1587. doi: 10.1016/j.ssc.2011.07.025

    13. [13]

      ZHENG Z, HUANG B, WANG Z, GUO M, QIN X, ZHANG X, WANG P, DAI Y. Crystal faces of Cu2O and their stabilities in photocatalytic reaction[J]. J Phys Chem C, 2009,113(32):462-470.  

    14. [14]

      LEAH ISSEROFF B, CARTER E A. First-principles predictions of the structure, stability, and photocatalytic potential of Cu2O surfaces[J]. J Phys Chem B, 2013,117(49):15750-60. doi: 10.1021/jp406454c

    15. [15]

      GAI Y, LI J, LI S S, XIA J B, WEI S H. Design of narrow-gap TiO2:A passivated codoping approach for enhanced photoelectrochemical activity[J]. Phys Rev Lett, 2009,102(3)036402. doi: 10.1103/PhysRevLett.102.036402

    16. [16]

      BALACHANDRAN S, SWAMINATHAN M. Facile fabrication of heterostructured Bi2O3-ZnO photocatalyst and its enhanced photocatalytic activity[J]. J Phys Chem C, 2013,116(50):26306-26312.  

    17. [17]

      WANG Z, HUANG B, DAI Y, QIN X, ZANG X, WANG P, LIU H, YU J. Highly photocatalytic ZnO/In2O3 heteronanostructures synthesized by a coprecipitation method[J]. J Phys Chem C, 2009,113(11):4612-4617. doi: 10.1021/jp8107683

    18. [18]

      VAIANO V, MATARANGOLO M, SACCO O, SANNINO D. Photocatalytic treatment of aqueous solutions at high dye concentration using praseodymium-doped ZnO catalysts[J]. Appl Catal B:Environ, 2017,209:621-630. doi: 10.1016/j.apcatb.2017.03.015

    19. [19]

      JIANG Z Q, YAO G, AN X Y, FU Y J, GAO L H, WU W D, WANG X M. Electronic and optical properties of Au-doped Cu2O:A first principles investigation[J]. Chin Phys B, 2014,23(5):470-477.  

    20. [20]

      ZHANG L, JING D, GUO L, YAO X. In situ photochemical synthesis of Zn-doped Cu2O hollow microcubes for high efficient photocatalytic H2 production[J]. Acs Sustainable Chem Eng, 2014,2(6):1446-1452. doi: 10.1021/sc500045e

    21. [21]

      PENG Jian, REN Rong-kang, LI Jian-ning, ZHANG Ming-ju, NIU Meng, MA Lei, YAN Xiao-bing, ZHENG Shu-kai. First principles calculation of Cl doped Cu2O[J]. Micronanoelectronic Technol, 2017(3):157-161.  

    22. [22]

      SEGALL M D, LINDAN P J D, PROBERT M J, PICKARD C J, HASNIP P J, CLARK S J, PAYNE M C. First-principles simulation:ideas, illustrations and the CASTEP code[J]. J Phys Condens Matter, 2002,14(11):2717-2744. doi: 10.1088/0953-8984/14/11/301

    23. [23]

      VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys Rev B:Condens Matter, 1990,41(11):7892-7895. doi: 10.1103/PhysRevB.41.7892

    24. [24]

      PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996,77(18):3865-3868. doi: 10.1103/PhysRevLett.77.3865

    25. [25]

      ZHAO R, HASKELL W B, TAN V Y F. Stochastic L-BFGS:Improved convergence rates and practical acceleration strategies[J]. IEEE Trans Signal Process, 2018,66(5):1155-1169. doi: 10.1109/TSP.2017.2784360

    26. [26]

      KATAYAMA J, ITO K, MATSUOKA M, TAMAKI J. Performance of Cu2O/ZnO solar cell prepared by two-step electrodeposition[J]. J Appl Electrochem, 2004,34(7):687-692. doi: 10.1023/B:JACH.0000031166.73660.c1

    27. [27]

      PU Chun-ying, LI Hong-jing, TANG Xin, ZHANG Qing-yu. Opyical properties of N-doped Cu2O films and relevant analysis with first-principles calculations (in Chinese)[J]. Acta Phys Sin, 2012,61(4):380-385. doi: 10.3969/j.issn.1672-7940.2012.04.002

    28. [28]

      CHEN Ting, PANG Jun, HE Hong, PENG Yun, WU Nan, XU Jian, DU Cheng-xu, PANG Xing-xing, WU Zhi-min, CUI Yu-ting. Photoelectric properties of Mn-doped LiMgP new diluted magnetic semiconductor (in Chinese)[J]. Chin Sci Bull, 2017,62(35):4169-4178.  

    29. [29]

      ALEJANDRO M R, MORENO M G, TAKEUCHI N. First principles calculations of the electronic properties of bulk Cu2O, clean and doped with Ag, Ni, and Zn[J]. Solid State Sci, 2003,5(2):291-295.  

    30. [30]

      XIA S, LIU L, KONG Y, DIAO Y. A DFT study on NEA GaN photocathode with an ultrathin n-type Si-doped GaN cap layer[J]. Chem Phys Lett, 2016,663:90-96. doi: 10.1016/j.cplett.2016.09.074

    31. [31]

      SAHA S, SINHA T P, MOOKERJEE A. Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3[J]. Phys Rev B, 2000,62(13):699-702.  

    32. [32]

      LI L, WANG W, LIU H, LIU X, SONG Q, REN S. First principles calculations of electronic band structure and optical properties of Cr-doped ZnO[J]. J Phys Chem C, 2009,113(19):8460-8464. doi: 10.1021/jp811507r

  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    3. [3]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    4. [4]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    5. [5]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    6. [6]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    9. [9]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    10. [10]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    11. [11]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    12. [12]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    13. [13]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    14. [14]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    15. [15]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    18. [18]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

Metrics
  • PDF Downloads(8)
  • Abstract views(2527)
  • HTML views(232)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return