Citation: WU Jiang-hong, XUE Wei, SU Li-hong, LI Jun-tian, WANG Hai-tang. Effect of treatment method on the performance of boron nitride supported iron catalysts in the Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(10): 1245-1250. shu

Effect of treatment method on the performance of boron nitride supported iron catalysts in the Fischer-Tropsch synthesis

  • Corresponding author: WU Jiang-hong, wujianghong2006@126.com
  • Received Date: 16 May 2019
    Revised Date: 19 August 2019

    Fund Project: The project was supported by the Foundation of Shanxi Institute of Energy (ZB-2018001)the Foundation of Shanxi Institute of Energy ZB-2018001

Figures(4)

  • Three boron nitride (BN) supported iron catalysts were prepared by the incipient-wetness impregnation method and characterized by XRD, TEM, FT-IR, and H2-TPR; their phase structure, morphology, reduction behavior and performance in the F-T synthesis were investigated. The results indicate that the addition of Cu promoter has little influence on the phase structure of BN support, whereas the addition of sodium borate can improve the crystallinity of BN support. Although the change in the catalyst morphology by introducing Cu and sodium borate is very small, the addition of Cu and sodium borate can decrease the reduction temperature of the BN-supported iron-based catalysts. For F-T synthesis under 340℃, 2 MPa, GHSV=1500 h-1 and n(H2)/n(CO)=2, the conversions of CO over Fe/BN, Fe/BNM and Fe-Cu/BN are 12.3%, 36.2% and 31.6%, respectively and the corresponding selectivities to CH4 are 57.9%, 26.8% and 44.7%, respectively. Fe-Cu/BN and Fe/BNM exhibit higher activity than Fe/BN, suggesting that adding promoter and improving the interaction between support and active component can both enhance the activity of boron nitride supported iron catalysts in F-T synthesis, which may give a clue to the design of highly active BN-supported iron catalysts.
  • 加载中
    1. [1]

      ZHANG Xiang-fa, LIANG Hao, MENG Ming-qiang. Preparation of hexagonal boron nitride and its application in the establishment of hexagonal boron nitride[J]. Diamond Abrasives Eng, 2012,4(32):14-18.  

    2. [2]

      SUN W, MENG Y, FU Q, WANG F, WANG G, GAO W, HUANG X, LU F. High-yield production of boron nitride nanosheets and its uses as a catalyst support for hydrogenation of nitroaromatics[J]. ACS Appl Mater Interfaces, 2016,8(15):9881-9888. doi: 10.1021/acsami.6b01008

    3. [3]

      GU Y, ZHENG M, LIU Y, XU Z. Low-temperature synthesis and growth of hexagonal boron-nitride in a lithium bromide melt[J]. J Am Ceram Soc, 2007,90(5):1589-1591. doi: 10.1111/j.1551-2916.2007.01551.x

    4. [4]

      GAO R, YIN L. High-yield synthesis of boron nitride nanosheets with strong ultraviolet cathodoluminescence emission[J]. J Phys Chem C, 2009,113(34):15160-15165. doi: 10.1021/jp904246j

    5. [5]

      JIA Yan. Preparation of AlN and BN nanomaterials by direct-current arc method and study on high temperature and high pressure[D]. Jilin: Jilin University, 2013. 

    6. [6]

      HE Dong-qing, LIANG Jia-ming, LIANG Bing. Progress in preparation of hexagonal boron nitride particles[J]. Mater Re, 2015,29(9):92-96.  

    7. [7]

      ZHENG Sheng-zhi, DIAO Jie. Synthesis of hexagonal boron nitride and high temperature fineness[J]. J Liaodong Univ, 2008,15(2):69-70. doi: 10.3969/j.issn.1673-4939.2008.02.003

    8. [8]

      WU J H, WANG L C, LV B L, CHEN J G. Facile fabrication of BCN nanosheet-encapsulated nano-Iron as highly stable Fischer-Tropsch synthesis catalyst[J]. ACS Appl Mater Interfaces, 2017,9(16):14319-14327. doi: 10.1021/acsami.7b00561

    9. [9]

      ANGSHUMAN N, RAO C N R. Graphene analogues of BN: Novel synthesis and properties[J]. ACS Nano, 2010,4(3):1539-1544. doi: 10.1021/nn9018762

    10. [10]

      TANG S L, LIU Y J, WANG H X, ZHAO J X, CAI Q H, WANG X Z. Modifying the electronic and magnetic properties of the boron nitride (BN) nanosheet by NHx (x=0, 1, and 2) groups[J]. Diamond Relat Mater, 2014,44:54-61. doi: 10.1016/j.diamond.2013.12.005

    11. [11]

      KUMAR R, RAO C N R. Functionality preservation with enhanced mechanical integrity in the nanocomposites of the metal-organic framework, ZIF-8, with BN nanosheets[J]. 2014, 1(1): 513-517.

    12. [12]

      DENG X R, KOUSKA H, TOKOROYAMA T, UMEHARA N. Deposition and tribological behaviors of ternary BCN coatings at elevated temperatures[J]. Surf Coat Technol, 2014,259:2-6. doi: 10.1016/j.surfcoat.2014.08.087

    13. [13]

      ZHAO Guo-wei, QIAN Qiong-li. Surface modification and application of boron nitride nanotubes[J]. J Wuhan Inst Technol, 2011,33:14-20.  

    14. [14]

      WU J H, WANG L C, YANG X, LV B L, CHEN J G. Support effect of the Fe/BN catalyst on Fischer-Tropsch performances: Role of the surface B-O defect[J]. Ind Eng Chem Res, 2018,57(8):2805-2810. doi: 10.1021/acs.iecr.7b04864

    15. [15]

      YUAN Lei, YU Jing-kun. Preparation and crystallization conversion behavior of t-BN[J]. J Northeast Univ, 2008,29:93-95. doi: 10.3321/j.issn:1005-3026.2008.01.024

    16. [16]

      GUO Shu-peng, LI De-bao. Study on F-T reaction performance of Co/Al2O3-SiO2 catalyst[J]. J Fuel Chem Technol, 2018,46(2):198-203. doi: 10.3969/j.issn.0253-2409.2018.02.009 

    17. [17]

      ROZENBERG A S, STNENKO Y A, CHUKANOV N V. I. R. Spectroscopy characterization of various types of structural irregularities in pyrolytic boron nitride[J]. J Mater Sci, 1993,28:5675-5678. doi: 10.1007/BF00367846

    18. [18]

      MA Cai-lian, CHEN Jian-gang. Effect of Cu promoter on the performance of polyvinyl alcohol-assisted precipitated iron catalyst for Fischer-Tropsch synthesis[J]. J Fuel Chem Technol, 2018,46(7):835-840. doi: 10.3969/j.issn.0253-2409.2018.07.009 

    19. [19]

      ZIELINSKI I Z J, ZNAK L, KASZKUR Z. Reduction of Fe2O3 with hydrogen[J]. Appl Catal A: Gen, 2010,381(1/2):191-196.  

    20. [20]

      DING J, CHEN J G. Hydrogenation of diethyl oxalate over Cu/SiO2 catalyst with enhanced activity and stability: Contribution of the spatial restriction by varied pores of support[J]. Appl Catal A: Gen, 2018,508:68-79.  

    21. [21]

      XIONG H, MOTCHELAHO M A, MOYO M, JEWELL L L, COVILLE N J. Effect of group I alkali metal promoters on Fe/CNT catalysts in Fischer-Tropsch synthesis[J]. Fuel, 2015,150(15):687-696.  

    22. [22]

      DE SMIT E, DE GROOT F M, BLUME R, HAVECKER M, KNOP-GERICKE A, WECKHUYSEN B M. The role of Cu on the reduction behavior and surface properties of Fe-based Fischer-Tropsch catalysts[J]. Phys Chem Chem Phys, 2010,12(3):667-680. doi: 10.1039/B920256K

    23. [23]

      AN Xia. Effects of some preparation factors on the structure of iron-based catalysts and the performance of F-T synthesis[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2007. 

  • 加载中
    1. [1]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    2. [2]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    3. [3]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    4. [4]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    5. [5]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    6. [6]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    7. [7]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    8. [8]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    9. [9]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    10. [10]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    11. [11]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    15. [15]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    18. [18]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(8)
  • Abstract views(1449)
  • HTML views(92)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return