Citation: WU Jiang-hong, XUE Wei, SU Li-hong, LI Jun-tian, WANG Hai-tang. Effect of treatment method on the performance of boron nitride supported iron catalysts in the Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(10): 1245-1250. shu

Effect of treatment method on the performance of boron nitride supported iron catalysts in the Fischer-Tropsch synthesis

  • Corresponding author: WU Jiang-hong, wujianghong2006@126.com
  • Received Date: 16 May 2019
    Revised Date: 19 August 2019

    Fund Project: The project was supported by the Foundation of Shanxi Institute of Energy (ZB-2018001)the Foundation of Shanxi Institute of Energy ZB-2018001

Figures(4)

  • Three boron nitride (BN) supported iron catalysts were prepared by the incipient-wetness impregnation method and characterized by XRD, TEM, FT-IR, and H2-TPR; their phase structure, morphology, reduction behavior and performance in the F-T synthesis were investigated. The results indicate that the addition of Cu promoter has little influence on the phase structure of BN support, whereas the addition of sodium borate can improve the crystallinity of BN support. Although the change in the catalyst morphology by introducing Cu and sodium borate is very small, the addition of Cu and sodium borate can decrease the reduction temperature of the BN-supported iron-based catalysts. For F-T synthesis under 340℃, 2 MPa, GHSV=1500 h-1 and n(H2)/n(CO)=2, the conversions of CO over Fe/BN, Fe/BNM and Fe-Cu/BN are 12.3%, 36.2% and 31.6%, respectively and the corresponding selectivities to CH4 are 57.9%, 26.8% and 44.7%, respectively. Fe-Cu/BN and Fe/BNM exhibit higher activity than Fe/BN, suggesting that adding promoter and improving the interaction between support and active component can both enhance the activity of boron nitride supported iron catalysts in F-T synthesis, which may give a clue to the design of highly active BN-supported iron catalysts.
  • 加载中
    1. [1]

      ZHANG Xiang-fa, LIANG Hao, MENG Ming-qiang. Preparation of hexagonal boron nitride and its application in the establishment of hexagonal boron nitride[J]. Diamond Abrasives Eng, 2012,4(32):14-18.  

    2. [2]

      SUN W, MENG Y, FU Q, WANG F, WANG G, GAO W, HUANG X, LU F. High-yield production of boron nitride nanosheets and its uses as a catalyst support for hydrogenation of nitroaromatics[J]. ACS Appl Mater Interfaces, 2016,8(15):9881-9888. doi: 10.1021/acsami.6b01008

    3. [3]

      GU Y, ZHENG M, LIU Y, XU Z. Low-temperature synthesis and growth of hexagonal boron-nitride in a lithium bromide melt[J]. J Am Ceram Soc, 2007,90(5):1589-1591. doi: 10.1111/j.1551-2916.2007.01551.x

    4. [4]

      GAO R, YIN L. High-yield synthesis of boron nitride nanosheets with strong ultraviolet cathodoluminescence emission[J]. J Phys Chem C, 2009,113(34):15160-15165. doi: 10.1021/jp904246j

    5. [5]

      JIA Yan. Preparation of AlN and BN nanomaterials by direct-current arc method and study on high temperature and high pressure[D]. Jilin: Jilin University, 2013. 

    6. [6]

      HE Dong-qing, LIANG Jia-ming, LIANG Bing. Progress in preparation of hexagonal boron nitride particles[J]. Mater Re, 2015,29(9):92-96.  

    7. [7]

      ZHENG Sheng-zhi, DIAO Jie. Synthesis of hexagonal boron nitride and high temperature fineness[J]. J Liaodong Univ, 2008,15(2):69-70. doi: 10.3969/j.issn.1673-4939.2008.02.003

    8. [8]

      WU J H, WANG L C, LV B L, CHEN J G. Facile fabrication of BCN nanosheet-encapsulated nano-Iron as highly stable Fischer-Tropsch synthesis catalyst[J]. ACS Appl Mater Interfaces, 2017,9(16):14319-14327. doi: 10.1021/acsami.7b00561

    9. [9]

      ANGSHUMAN N, RAO C N R. Graphene analogues of BN: Novel synthesis and properties[J]. ACS Nano, 2010,4(3):1539-1544. doi: 10.1021/nn9018762

    10. [10]

      TANG S L, LIU Y J, WANG H X, ZHAO J X, CAI Q H, WANG X Z. Modifying the electronic and magnetic properties of the boron nitride (BN) nanosheet by NHx (x=0, 1, and 2) groups[J]. Diamond Relat Mater, 2014,44:54-61. doi: 10.1016/j.diamond.2013.12.005

    11. [11]

      KUMAR R, RAO C N R. Functionality preservation with enhanced mechanical integrity in the nanocomposites of the metal-organic framework, ZIF-8, with BN nanosheets[J]. 2014, 1(1): 513-517.

    12. [12]

      DENG X R, KOUSKA H, TOKOROYAMA T, UMEHARA N. Deposition and tribological behaviors of ternary BCN coatings at elevated temperatures[J]. Surf Coat Technol, 2014,259:2-6. doi: 10.1016/j.surfcoat.2014.08.087

    13. [13]

      ZHAO Guo-wei, QIAN Qiong-li. Surface modification and application of boron nitride nanotubes[J]. J Wuhan Inst Technol, 2011,33:14-20.  

    14. [14]

      WU J H, WANG L C, YANG X, LV B L, CHEN J G. Support effect of the Fe/BN catalyst on Fischer-Tropsch performances: Role of the surface B-O defect[J]. Ind Eng Chem Res, 2018,57(8):2805-2810. doi: 10.1021/acs.iecr.7b04864

    15. [15]

      YUAN Lei, YU Jing-kun. Preparation and crystallization conversion behavior of t-BN[J]. J Northeast Univ, 2008,29:93-95. doi: 10.3321/j.issn:1005-3026.2008.01.024

    16. [16]

      GUO Shu-peng, LI De-bao. Study on F-T reaction performance of Co/Al2O3-SiO2 catalyst[J]. J Fuel Chem Technol, 2018,46(2):198-203. doi: 10.3969/j.issn.0253-2409.2018.02.009 

    17. [17]

      ROZENBERG A S, STNENKO Y A, CHUKANOV N V. I. R. Spectroscopy characterization of various types of structural irregularities in pyrolytic boron nitride[J]. J Mater Sci, 1993,28:5675-5678. doi: 10.1007/BF00367846

    18. [18]

      MA Cai-lian, CHEN Jian-gang. Effect of Cu promoter on the performance of polyvinyl alcohol-assisted precipitated iron catalyst for Fischer-Tropsch synthesis[J]. J Fuel Chem Technol, 2018,46(7):835-840. doi: 10.3969/j.issn.0253-2409.2018.07.009 

    19. [19]

      ZIELINSKI I Z J, ZNAK L, KASZKUR Z. Reduction of Fe2O3 with hydrogen[J]. Appl Catal A: Gen, 2010,381(1/2):191-196.  

    20. [20]

      DING J, CHEN J G. Hydrogenation of diethyl oxalate over Cu/SiO2 catalyst with enhanced activity and stability: Contribution of the spatial restriction by varied pores of support[J]. Appl Catal A: Gen, 2018,508:68-79.  

    21. [21]

      XIONG H, MOTCHELAHO M A, MOYO M, JEWELL L L, COVILLE N J. Effect of group I alkali metal promoters on Fe/CNT catalysts in Fischer-Tropsch synthesis[J]. Fuel, 2015,150(15):687-696.  

    22. [22]

      DE SMIT E, DE GROOT F M, BLUME R, HAVECKER M, KNOP-GERICKE A, WECKHUYSEN B M. The role of Cu on the reduction behavior and surface properties of Fe-based Fischer-Tropsch catalysts[J]. Phys Chem Chem Phys, 2010,12(3):667-680. doi: 10.1039/B920256K

    23. [23]

      AN Xia. Effects of some preparation factors on the structure of iron-based catalysts and the performance of F-T synthesis[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2007. 

  • 加载中
    1. [1]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    2. [2]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    3. [3]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    4. [4]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    5. [5]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    6. [6]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    7. [7]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    8. [8]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    9. [9]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    10. [10]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    11. [11]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    12. [12]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    13. [13]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    14. [14]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    15. [15]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    16. [16]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    17. [17]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    18. [18]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    19. [19]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    20. [20]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

Metrics
  • PDF Downloads(8)
  • Abstract views(1506)
  • HTML views(93)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return