Citation: WANG Sheng-kang, WEI Xian-yong, WANG Yu-gao, LI Zhan-ku, CHEN You-xiang, XU Dan-dan, TENG Qing-qing, LI Wei-tu, LIU Xiang-xue, ZHOU Ming-yao, ZONG Zhi-min. Compositional features of extracts from Shenmu char powder[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(1): 1-6. shu

Compositional features of extracts from Shenmu char powder

  • Corresponding author: WEI Xian-yong, wei_xianyong@163.com
  • Received Date: 22 September 2015
    Revised Date: 2 December 2015

    Fund Project: the Research and Innovation Project for College Graduates of Jiangsu Province KYLX_1396The project was supported by the National Natural Science Foundation of China 21276268

Figures(8)

  • Shenmu char powder (SCP) was sequentially extracted with petroleum ether, carbon disulfide, dichloromethane, acetone, and methanol in a Soxhlet extractor to obtain extracts 1-5 (E1-5) and final residue. The total extract yield of SCP is 1.76%. All the extracts were characterized with gas chromatograph/mass spectrometer (GC/MS), atmospheric solid analysis probe/time-of-flight mass spectrometer (ASAP/TOF-MS), and electrospray ionization/time-of-flight mass spectrometer (ESI/TOF-MS). Normal alkanes with C15 to C24 and arenes with 3 and 4 rings are predominant in E1 and E2, respectively, while more heteroatom-containing organic species were identified in E3-5. Organooxygen compounds are the most abundant in E4 and E5 based on analysis with GC/MS. Much more heteroatom-containing organic compounds were detected in E3-5 with ASAP/TOF-MS and ESI/TOF-MS than with GC/MS.
  • 加载中
    1. [1]

      SUN H Q, QU S J, WANG L B. Present situation of the semi-coke production and utilization[J]. Clean Coal Technol, 2008,14(6):62-65.  

    2. [2]

      JIAO Y, HU B S, GUI Y L. Feasibility analysis of semi-coke as JISCO blast furnace with coal injection[J]. Energy Metall Ind, 2011,30(6):20-22.  

    3. [3]

      TIAN Y H, LAN X Z, ZHOU J, CHEN X Y, LI L B. Preparation of activated carbon from blue coke powder by microwave radiation and KOH activation[J]. Chem Eng, 2010,38(10):225-228.  

    4. [4]

      ZHANG C R, YE D M, CUI Y J, WU C Y, SHI X M. Study on industrial test of manufacture activated carbon in waste semi-coke powder[J]. Coal Convers, 1999,22(2):75-78.

    5. [5]

      ZHENG M D, YAN S C, HE X J. High value-added-value utilization of coke fine[J]. Fuel Chem Process, 2007,38(2):21-23.  

    6. [6]

      WANG Y G, WEI X Y, LIU J, YAN H L, WEI Z H, LI Y, LI P, LIU F J, ZONG Z M. Oxidation of Shenmu char powder with aqueous hydrogen peroxide-acetic anhydride[J]. Fuel Process Technol, 2015,136:56-63. doi: 10.1016/j.fuproc.2014.09.023

    7. [7]

      WU J J, HAN J Y, CHEN T B, YING Y, LI F M. Study of formed coke production and gasification experiment[J]. J China Univ Min Technol, 2005,34(6):779-783.  

    8. [8]

      LI Z K, WEI X Y, YANG Z S, YAN H L, WEI Z H, LI Y, ZONG Z M. Characterization of extracts from Geting bituminous coal[J]. Anal Lett, 2015,48(9):1494-1501. doi: 10.1080/00032719.2014.989529

    9. [9]

      SHI D L, WEI X Y, FAN X, ZONG Z M, CHEN B, ZHAO Y P, WANG Y G, CAO J P. Characterizations of the extracts from Geting bituminous coal by spectrometries[J]. Energy Fuels, 2013,27(7):3709-3717. doi: 10.1021/ef4004686

    10. [10]

      WEI X Y, WANG X H, ZONG Z M, NI Z H, ZHANG L F, JI Y F, XIE K C, LEE C W, LIU Z X, CHU N B, CUI J Y. Identification of organochlorines and organobromines in coals[J]. Fuel, 2004,83(17):2435-2438.  

    11. [11]

      SUN L B, ZONG Z M, KOU J H, CAO J P, YU G Y, ZHAO W, LI B M, LEE C W, XIE K C, WEI X Y. Identification of organic chlorines and iodines in the extracts from hydrotreated Argonne Premium coal residues[J]. Energy Fuels, 2007,21(4):2238-2239. doi: 10.1021/ef070091m

    12. [12]

      WEI X Y, WANG X H, ZONG Z M. Extraction of organonitrogen compounds from five Chinese coals with methanol[J]. Energy Fuels, 2009,23(10):4848-4851. doi: 10.1021/ef900086h

    13. [13]

      LIU Z X, LIU Z C. GC/MS analysis of water-soluble products from the mild oxidation of Longkou brown coal with H2O2[J]. Energy Fuels, 2003,17(2):424-426. doi: 10.1021/ef020071e

    14. [14]

      LI P, ZONG Z M, LIU F J, WANG Y G, WEI X Y, FAN X, ZHAO Y P, ZHAO W. Sequential extraction and characterization of liquefaction residue from Shenmu-Fugu subbituminous coal[J]. Fuel Process Technol, 2015,136:1-7. doi: 10.1016/j.fuproc.2014.04.013

    15. [15]

      LI P, ZONG Z M, LI Z K, WANG Y G, LIU F J, WEI X Y. Characterization of basic heteroatom-containing organic compounds in liquefaction residue from Shenmu-Fugu subbituminous coal by positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Fuel Process Technol, 2015,132:91-98. doi: 10.1016/j.fuproc.2014.12.026

    16. [16]

      RAMLUCKAN K, MOODLEY K G, BUX F. An evaluation of the efficacy of using selected solvents for the extraction of lipids from algal biomass by the soxhlet extraction method[J]. Fuel, 2014,116:103-108. doi: 10.1016/j.fuel.2013.07.118

    17. [17]

      DUTTA R, SARKAR U, MUKHERJEE A. Soxhlet extraction of crotalaria Juncea oil using cylindrical and annular packed beds[J]. Int J Chem Eng Appl, 2015,6(2):130-133.  

    18. [18]

      LIU F J, WEI X Y, LI W T, GUI J, LI P, WANG Y G, XIE R L, ZONG Z M. Methanolysis of extraction residue from Xianfeng lignite with NaOH and product characterizations with different spectrometries[J]. Fuel Process Technol, 2015,136:8-16. doi: 10.1016/j.fuproc.2014.07.012

    19. [19]

      ZONG Y, ZONG Z M, DING M J, ZHOU L, HUANG Y G, ZHENG Y Y, JIN X, MA Y M, WEI X Y. Separation and analysis of organic compounds in an Erdos coal[J]. Fuel, 2009,88(3):469-474. doi: 10.1016/j.fuel.2008.09.010

    20. [20]

      MCEWEN C N, MCKAY R G, LARSEN B S. Analysis of solids, liquids, and biological tissues using solids probe introduction at atmospheric pressure on commercial LC/MS instruments[J]. Anal Chem, 2005,77(23):7826-7831. doi: 10.1021/ac051470k

    21. [21]

      MCEWEN C N, LARSEN B S. Ionization mechanisms related to negative ion APPI, APCI, and DART[J]. J Am Soc Mass Spectrom, 2009,20(8):1518-1521. doi: 10.1016/j.jasms.2009.04.010

    22. [22]

      BRUNS E A, PERRAUD V, GREAVES J, FINLAYSON-PITTS B J. Atmospheric solids snalysis probe mass spectrometry: A new approach for airborne particle analysis[J]. Anal Chem, 2010,82(14):5922-5927. doi: 10.1021/ac101028j

    23. [23]

      BENNANI Y L. Drug discovery in the next decade: Innovation needed ASAP[J]. Drug Discovery Today, 2011,16(17/18):779-792.  

    24. [24]

      AHMED A, CHO Y J, NO M H, KOH J, TOMCZYK N, GILES K, YOO J S, KIM S. Application of the Mason-Schamp equation and ion mobility mass spectrometry to identify structurally related compounds in crude oil[J]. Anal Chem, 2010,83(1):77-83.  

    25. [25]

      TRIMPIN S, WIJERATHNE K, MCEWEN C N. Rapid methods of polymer and polymer additives identification: multi-sample solvent-free MALDI, pyrolysis at atmospheric pressure, and atmospheric solids analysis probe mass spectrometry[J]. Anal Chim Acta, 2009,654(1):20-25. doi: 10.1016/j.aca.2009.06.050

    26. [26]

      SMITH M J, CAMERON N R, MOSELY J A. Evaluating atmospheric pressure solids analysis probe (ASAP) mass spectrometry for the analysis of low molecular weight synthetic polymers[J]. Analyst, 2012,137(19):4524-4530. doi: 10.1039/c2an35556f

    27. [27]

      GARCÍA-VILLALBA R, CARRASCO-PANCORBO A, OLIVERAS-FERRAROS C, VÁZQUEZ-MARTÍN A, MENÉNDEZ J A, SEGURA-CARRETERO A, FERNÁNDEZ-GUTIÉRREZ A. Characterization and quantification of phenolic compounds of extra-virgin olive oils with anticancer properties by a rapid and resolutive LC-ESI-TOF MS method[J]. J Pharm Biomed Anal, 2010,51(2):416-429. doi: 10.1016/j.jpba.2009.06.021

    28. [28]

      OUNI Y, TAAMALLI A, GOMEZ-CARAVACA A M, SEGURA-CARRETERO A, FERNÁNDEZ-GUTIÉRREZ A, ZARROUK M. Characterisation and quantification of phenolic compounds of extra-virgin olive oils according to their geographical origin by a rapid and resolutive LC-ESI-TOF MS method[J]. Food Chem, 2011,127(3):1263-1267. doi: 10.1016/j.foodchem.2011.01.068

    29. [29]

      BAJOUB A, CARRASCO-PANCORBO A, AMINE AJAL E, OUAZZANI N, FERNÁNDEZ-GUTIÉRREZ A. Potential of LC-MS phenolic profiling combined with multivariate analysis as an approach for the determination of the geographical origin of north Moroccan virgin olive oils[J]. Food Chem, 2015,166(166):292-300.

    30. [30]

      AL-QAIM F F, ABDULLAH M P, OTHMAN M R, LATIP J, AFIQ W. A validation method development for simultaneous LC-ESI-TOF/MS analysis of some pharmaceuticals in Tangkas river-Malaysia[J]. J Braz Chem Soc, 2014,25(2):271-281.  

    31. [31]

      ZHAO L, LIANG S, LV L, ZHANG H, CHAI Y, ZHANG G. Screening and analysis of metabolites in rat urine after oral administration of Apocynum venetum L. extracts using HPLC-TOF-MS[J]. J Sep Sci, 2014,37(5):515-526. doi: 10.1002/jssc.201301036

    32. [32]

      XU F, LI D P, HUANG Z C, LU F L, WANG L, HUANG Y L, WANG R F, LIU G X, SHANG M Y, CAI S Q. Exploring in vitro, in vivo metabolism of mogroside V and distribution of its metabolites in rats by HPLC-ESI-IT-TOF-MSn[J]. J Pharm Biomed Anal, 2015,115(11):418-430.  

    33. [33]

      ZONG Z M, ZHANG J W, XIE R L, WANG T X, GAO J S, WU Y Q, WANG F C, LI B M, WEI X Y. Effect of charring temperature on the composition and solubility of chars formed from rapid heating of Shenfu coal[J]. Energy Sources Part A, 2010,32(7):620-627. doi: 10.1080/15567030802564773

    34. [34]

      LIANG H D. Secondary ion mass spectrometry of high-sulfur coal: Observation and interpretation of poly-sulfur ions[J]. Chin Sci Bull, 1999,44(13):1242-1245. doi: 10.1007/BF02885975

    35. [35]

      LIANG H D. Experimental evidence for naturally occurring molecular chlorine (Cl2) in organic phase of Chinese super-high sulfur coal[J]. J Fuel Chem Technol, 2001,29(5):385-389.

    36. [36]

      RAO Z, LIANG H D, LI Y F. Analysis of sulfur forms in high sulfur coals[J]. Rock Miner Anal, 2001,20(3):183-186.  

    37. [37]

      PETUCCI C, DIFFENDAL J. Atmospheric solids analysis probe: A rapid ionization technique for small molecule drugs[J]. J Mass Spectrom, 2008,43(11):1565-1568. doi: 10.1002/jms.v43:11

    38. [38]

      ZHU J L, FAN X, WEI X Y, WANG S Z, ZHU T G, ZHOU C C, ZHAO Y P, WANG R Y, LU Y, CHEN L, YOU C Y. Molecular characterization of heteroatomic compounds in a high-temperature coal tar using three mass spectrometers[J]. Fuel Process Technol, 2015,138:65-73. doi: 10.1016/j.fuproc.2015.04.020

    39. [39]

      VENTER A, NEFLIU M, COOKS R G. Ambient desorption ionization mass spectrometry[J]. TrAC, Trends Anal Chem, 2008,27(4):284-290. doi: 10.1016/j.trac.2008.01.010

  • 加载中
    1. [1]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    2. [2]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    3. [3]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

Metrics
  • PDF Downloads(1)
  • Abstract views(561)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return