Highly active Y-promoted CuO/ZrO2 catalysts for the production of hydrogen through water-gas shift reaction
- Corresponding author: ZHANG Yan-jie, yanjiezhang@mju.edu.cn ZHAN Ying-ying, jennyzan@fzu.edu.cn
Citation:
ZHANG Yan-jie, CHEN Chong-qi, ZHAN Ying-ying, LIN Qi, LOU Ben-yong, ZHENG Guo-cai, ZHENG Qi. Highly active Y-promoted CuO/ZrO2 catalysts for the production of hydrogen through water-gas shift reaction[J]. Journal of Fuel Chemistry and Technology,
;2017, 45(9): 1137-1145.
DING K L, GULEC A, JOHNSON A M, SCHWEITZER N M, STUCKY G D, MARKS L D, STAIR P C. Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts[J]. Science, 2015,350(6257):189-192. doi: 10.1126/science.aac6368
YANG M, LIU J, LEE S, ZUGIC B, HUANG J, ALLARD L F, FLYTZANI-STEPHANOPOULOS M. A common single-site Pt(Ⅱ)-O(OH)x-species stabilized by sodium on "active" and "inert" supports catalyzes the water-gas shift reaction[J]. J Am Chem Soc, 2015,137(10):3470-3473. doi: 10.1021/ja513292k
FLYTZANI-STEPHANOPOULOS M. Gold atoms stabilized on various supports catalyze the water-gas shift reaction[J]. Acc Chem Res, 2014,47(3):783-792. doi: 10.1021/ar4001845
LIN Xing-yi, YIN Ling, FAN Yan-yu, CHEN Chong-qi. Performance of Al2O3-modified CuO/Fe2O3 catalysts in the water-gas shift reaction[J]. Acta Phys -Chim Sin, 2015,31(4):757-763. doi: 10.3866/PKU.WHXB201501091
LEVALLEY T L, RICHARD A R, FAN M. The progress in water gas shift and steam reforming hydrogen production technologies-A review[J]. Int J Hydrogen Energy, 2014,39(30):16983-17000. doi: 10.1016/j.ijhydene.2014.08.041
PARK J B, GRACIANI J, EVANS J, STACCHIOLA D, MA S, LIU P, NAMBU A, FERNANDES-SANZ J, HRBEK J, RODRIGUEZ J A. High catalytic activity of Au/CeOx/TiO2(110) controlled by the nature of the mixed-metal oxide at the nanometer level[J]. Proc Nat Acad Sci U S A, 2009,106(13):4975-4980. doi: 10.1073/pnas.0812604106
MARRAS C, LOCHE D, CARTA D, CASULA M F, SCHIRRU M, CUTRUFELLO M G, CORRIAS A. Copper-based catalysts supported on highly porous silica for the water gas shift reaction[J]. ChemPlusChem, 2016,81(4):421-432. doi: 10.1002/cplu.201500395
LIN Xing-yi, ZHANG Yong, LI Ru-le, ZHAN Ying-ying, CHEN Chong-qi, YIN Ling. Catalytic properties of ZnO-modified copper ferrite catalysts in water-gas shift reaction[J]. J Fuel Chem Technol, 2014,42(11):1351-1356. doi: 10.3969/j.issn.0253-2409.2014.11.012
MOREIRA M N, RIBEIRO A M, CUNHA A F, RODIGUES A E, ZABILSKIY M, DJINOVIC P, PINTAR A. Copper based materials for water-gas shift equilibrium displacement[J]. Appl Catal B:Environ, 2016,189:199-209. doi: 10.1016/j.apcatb.2016.02.046
ZHANG Y, CHEN C, LIN X, LI D, CHEN X, ZHAN Y, ZHENG Q. CuO/ZrO2 catalysts for water-gas shift reaction:Nature of catalytically active copper species[J]. Int J Hydrogen Energy, 2014,39(8):3746-3754. doi: 10.1016/j.ijhydene.2013.12.161
CHEN C, RUAN C, ZHAN Y, LIN X, ZHENG Q, WEI K. The significant role of oxygen vacancy in Cu/ZrO2 catalyst for enhancing water-gas-shift performance[J]. Int J Hydrogen Energy, 2014,39(1):317-324. doi: 10.1016/j.ijhydene.2013.10.074
CERÓN M, CALATAYUD M. Application of dual descriptor to understand the activity of Cu/ZrO2 catalysts in the water gas shift reaction[J]. J Mol Model, 2017,2334. doi: 10.1007/s00894-016-3183-x
XIA W, WANG F, MU X, CHEN K, TAKAHASHI A, NAKAMURA I, FUJITANI T. Highly selective catalytic conversion of ethanol to propylene over yttrium-modified zirconia catalyst[J]. Catal Commun, 2017,90:10-13. doi: 10.1016/j.catcom.2016.11.011
TAKANO H, KIRIHATA Y, IZUMIYA K, KUMAGAI N, HABAZAKI H, HASHIMOTO K. Highly active Ni/Y-doped ZrO2 catalysts for CO2 methanation[J]. Appl Surf Sci, 2016,388:653-663. doi: 10.1016/j.apsusc.2015.11.187
LABAKI M, SIFFERT S, LAMONIER J, ZHILINSKAYA E A, ABOUKAIS A. Total oxidation of propene and toluene in the presence of zirconia doped by copper and yttrium Role of anionic vacancies[J]. Appl Catal B:Environ, 2003,43(3):199-209.
CADI-ESSADEK A, ROLDAN A, DE LEEUW N H. Ni deposition on yttria-stabilized ZrO2(111) surfaces:a density functional theory study[J]. J Phys Chem C, 2015,119(12):6581-6591. doi: 10.1021/jp512594j
DOW W P, HUANG T J. Effects of oxygen vacancy of yttria-stabilized zirconia support on carbon monoxide oxidation over copper catalyst[J]. J Catal, 1994,147(1):322-332. doi: 10.1006/jcat.1994.1143
MARTINELLI M, JACOBS G, GRAHAM U M, SHAFER W D, CRONAUER D C, KROPF A J, MARSHALL C L, KHALID S, VISCONTI C G, LIETTI L, DAVIS B H. Water-gas shift:Characterization and testing of nanoscale YSZ supported Pt catalysts[J]. Appl Catal A:Gen, 2015,497:184-197. doi: 10.1016/j.apcata.2014.12.055
SHE Y S, LI L, ZHAN Y Y, LIN X Y, ZHENG Q, WEI K M. Effect of yttrium addition on water-gas shift reaction over CuO/CeO2 catalysts[J]. J Rare Earths, 2009,27(3):411-417. doi: 10.1016/S1002-0721(08)60262-8
GERVASINI A, BENNICI S. Dispersion and surface states of copper catalysts by temperature-programmed-reduction of oxidized surfaces (s-TPR)[J]. Appl Catal A:Gen, 2005,281(1/2):199-205.
HOANG D L, DANG T T H, ENGELDINGER J, SCHNEIDER M, RADNIK J, RICHTER M, MARTIN A. TPR investigations on the reducibility of Cu supported on Al2O3, zeolite Y and SAPO-5[J]. J Sol Stat Chem, 2011,184(8):1915-1923. doi: 10.1016/j.jssc.2011.05.042
LI Wei, CHI Ke-bin, MA Huai-jun, LIU Hao, QU Wei, TIAN Zhi-jian. Effect of supports on the catalytic performance of Pt/WO3-ZrO2 catalysts for hydroisomerization[J]. J Fuel Chem Technol, 2017,45(3):329-336.
VERA C R, PIECK C L, SHIMIZU K, PARERA J M. Tetragonal structure, anionic vacancies and catalytic activity of SO42-ZrO2 catalysts for n-butane isomerization[J]. Appl Catal A:Gen, 2002,230(1/2):137-151.
CHAOPRADITH D T, SCANLON D O, CATLOW R A. Adsorption of water on yttria-stabilized zirconia[J]. J Phys Chem C, 2015,119(39):22526-22533. doi: 10.1021/acs.jpcc.5b06825
BEINIK I, HELLSTRÖM M, JENSEN , T N, BROQVIST P, LAURITSEN J V. Enhanced wetting of Cu on ZnO by migration of subsurface oxygen vacancies[J]. Nat Commun, 2015,68845. doi: 10.1038/ncomms9845
LAGUNA O H, PÉREZ A, CENTENO M A, ODRIOZOLA J A. Synergy between gold and oxygen vacancies in gold supported on Zr-doped ceria catalysts for the CO oxidation[J]. Appl Catal B:Environ, 2015,176-177:385-395. doi: 10.1016/j.apcatb.2015.04.019
HERNÁNDEZ W Y, ROMERO-SARRIA F, CENTENO M A, ODRIOZOLA J A. In situ characterization of the dynamic gold-support interaction over ceria modified Eu3+. Influence of the oxygen vacancies on the CO oxidation reaction[J]. J Phys Chem C, 2010,114(24):10857-10865. doi: 10.1021/jp1013225
SING K S W, EVERETT D H, HAUL R A W, MOSCOU L, PIEROTTI R A, ROUQUÉROL J, SIEMIENIEWSKA T. Reporting physisorption date for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure Appl Chem, 1985,57(4):603-619.
ZHAI Y, PIERRE D, SI R, DENG W, FERRIN P, NILEKAR A U, PENG G, HERRON J A, BELL D C, SALTSBURG H, FLYTZANI-STEPHANOPOULOS M. Alkali-stabilized Pt-OHx species catalyze low-temperature water-gas shift reactions[J]. Science, 2010,329:1633-1636. doi: 10.1126/science.1192449
SI R, RAITANO J, YI N, ZHANG L, CHAN S, FLYTZANI-STEPHANOPOULOS M. Structure sensitivity of the low-temperature water-gas shift reaction on Cu-CeO2 catalysts[J]. Catal Today, 2012,180(1):68-80. doi: 10.1016/j.cattod.2011.09.008
YANG M, ALLARD L F, FLYTZANI-STEPHANOPOULOS M. Atomically dispersed Au-(OH)x species bound on titania catalyze the low-temperature water-gas shift reaction[J]. J Am Chem Soc, 2013,135(10)3771.
WITOON T, CHALORNGTHAM J, DUMRONGBUNDITKUL P, CHAREONPANICH M, LIMTRAKUL J. CO2 hydrogenation to methanol over Cu/ZrO2 catalysts:Effects of zirconia phases[J]. Chem Eng J, 2016,293:327-336. doi: 10.1016/j.cej.2016.02.069
MA Z Y, YANG C, WEI W, LI W H, SUN Y H. Surface properties and CO adsorption on zirconia polymorphs[J]. J Mol Catal A:Chem, 2005,227(1):119-124.
ZHAO Y, LI W, ZHANG M, TAO K. A comparison of surface acidic features between tetragonal and monoclinic nanostructured zirconia[J]. Catal Commun, 2002,3(6):239-245. doi: 10.1016/S1566-7367(02)00089-4
BASAHEL S N, MOKHTAR M, ALSHARAEH E H, ALI T T, MAHMOUD H A, NARASIMHARAO K. Physico-chemical and catalytic properties of mesoporous CuO-ZrO2 catalysts[J]. Catalysts, 2016,6(4)57. doi: 10.3390/catal6040057
RUI Z, HUANG Y, ZHENG Y, JI H, YU X. Effect of titania polymorph on the properties of CuO/TiO2 catalysts for trace methane combustion[J]. J Mol Catal A:Chem, 2013,372:128-136. doi: 10.1016/j.molcata.2013.02.026
KANG M Y, YUN H J, YU S, KIM W, KIM N D, Yi J. Effect of TiO2 crystalline phase on CO oxidation over CuO catalysts supported on TiO2[J]. J Mol Catal A:Chem, 2013,368-369:72-77. doi: 10.1016/j.molcata.2012.11.021
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Qinjin DAI , Shan FAN , Pengyang FAN , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Yong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Pengzi Wang , Wenjing Xiao , Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
Yuan GAO , Yiming LIU , Chunhui WANG , Zhe HAN , Chaoyue FAN , Jie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Hongzhi Zhang , Hong Li , Asif Ali Haider , Junpeng Li , Zhi Xie , Hongming Jiang , Conglin Liu , Rui Wang , Jing Zhu . An unexpected role of lanthanide substitution in thermally responsive phosphors NaLnTe2O7: Eu3+ (Ln = Y and Gd). Chinese Journal of Structural Chemistry, 2025, 44(2): 100509-100509. doi: 10.1016/j.cjsc.2024.100509
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Yukai Jiang , Yihan Wang , Yunkai Zhang , Yunping Wei , Ying Ma , Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
(a): Cu/Zr; (b): Cu/Zr-2Y; (c): Cu/Zr-5Y
a: Cu/Zr; b: Cu/Zr-2Y; c: Cu/Zr-5Y
reaction condition: feed gas, 15%CO/7% CO2/55% H2/23% N2; steam/gas ratio, 0.4:1; space velocity, 4 000 cm3/(g·h)
reaction condition: feed gas, 15%CO/7% CO2/55% H2/23% N2; steam/gas ratio, 0.4:1; space velocity, 4 000 cm3/(g·h)