Citation: ZHANG Yan-jie, CHEN Chong-qi, ZHAN Ying-ying, LIN Qi, LOU Ben-yong, ZHENG Guo-cai, ZHENG Qi. Highly active Y-promoted CuO/ZrO2 catalysts for the production of hydrogen through water-gas shift reaction[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(9): 1137-1145. shu

Highly active Y-promoted CuO/ZrO2 catalysts for the production of hydrogen through water-gas shift reaction

  • Corresponding author: ZHANG Yan-jie, yanjiezhang@mju.edu.cn ZHAN Ying-ying, jennyzan@fzu.edu.cn
  • Received Date: 18 May 2017
    Revised Date: 29 June 2017

    Fund Project: Natural Science Foundation of Fujian Province 2017J01584Natural Science Foundation of Fujian Province 2017J05025the National Natural Science Foundation of China 21503105JK Project of the Education Department of Fujian Province JK2015038The project was supported by the National Natural Science Foundation of China (21503105), Natural Science Foundation of Fujian Province (2017J05025, 2017J01584), JK Project of the Education Department of Fujian Province (JK2015038), JA Project of the Education Department of Fujian Province (JA15419) and the plan of college outstanding young research talents in Fujian Province(2016)JA Project of the Education Department of Fujian Province JA15419

Figures(6)

  • ZrO2 doped with various concentrations of yttrium(0-5%) was prepared by a hydrothermal homogeneous co-precipitation method and CuO was then deposited on ZrO2 by a deposition-precipitation method to get the yttrium promoted CuO/ZrO2 catalyst; its performance in the water-gas shift reaction for producing hydrogen was then investigated. The results indicate that the catalytic activity of CuO/ZrO2 can be effectively improved by yttrium modification; over the yttrium promoted CuO/ZrO2 catalyst with an yttrium concentration of 2%, the CO conversion reaches 91.4% at 270℃, much higher than those over the conventional CuO/ZnO and CuO/CeO2 catalysts. The XRD, N2-physisorption, N2O titration, SEM and CO-TPR characterization results reveal that Y3+ is successfully incorporated into the lattice of ZrO2, which has a great influence on the structure and reducibility of the CuO/ZrO2 catalysts. Y3+ doping into ZrO2 introduces oxygen vacancies, improving the dispersion of CuO and increasing the proportion of catalytically active Cu-[O]-Zr species. In addition, the introduction of yttrium improves the monodispersity and modifies the texture properties of the CuO/ZrO2 catalysts. As a result, the superior activity of 2% yttrium promoted CuO/ZrO2 catalyst is probably attributed to the abundance of Cu-[O]-Zr species, high reducibility of Cu-[O]-Zr species and surface hydroxyl groups, high monodispersity and proper textural properties.
  • 加载中
    1. [1]

      DING K L, GULEC A, JOHNSON A M, SCHWEITZER N M, STUCKY G D, MARKS L D, STAIR P C. Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts[J]. Science, 2015,350(6257):189-192. doi: 10.1126/science.aac6368

    2. [2]

      YANG M, LIU J, LEE S, ZUGIC B, HUANG J, ALLARD L F, FLYTZANI-STEPHANOPOULOS M. A common single-site Pt(Ⅱ)-O(OH)x-species stabilized by sodium on "active" and "inert" supports catalyzes the water-gas shift reaction[J]. J Am Chem Soc, 2015,137(10):3470-3473. doi: 10.1021/ja513292k

    3. [3]

      FLYTZANI-STEPHANOPOULOS M. Gold atoms stabilized on various supports catalyze the water-gas shift reaction[J]. Acc Chem Res, 2014,47(3):783-792. doi: 10.1021/ar4001845

    4. [4]

      LIN Xing-yi, YIN Ling, FAN Yan-yu, CHEN Chong-qi. Performance of Al2O3-modified CuO/Fe2O3 catalysts in the water-gas shift reaction[J]. Acta Phys -Chim Sin, 2015,31(4):757-763. doi: 10.3866/PKU.WHXB201501091

    5. [5]

      LEVALLEY T L, RICHARD A R, FAN M. The progress in water gas shift and steam reforming hydrogen production technologies-A review[J]. Int J Hydrogen Energy, 2014,39(30):16983-17000. doi: 10.1016/j.ijhydene.2014.08.041

    6. [6]

      PARK J B, GRACIANI J, EVANS J, STACCHIOLA D, MA S, LIU P, NAMBU A, FERNANDES-SANZ J, HRBEK J, RODRIGUEZ J A. High catalytic activity of Au/CeOx/TiO2(110) controlled by the nature of the mixed-metal oxide at the nanometer level[J]. Proc Nat Acad Sci U S A, 2009,106(13):4975-4980. doi: 10.1073/pnas.0812604106

    7. [7]

      MARRAS C, LOCHE D, CARTA D, CASULA M F, SCHIRRU M, CUTRUFELLO M G, CORRIAS A. Copper-based catalysts supported on highly porous silica for the water gas shift reaction[J]. ChemPlusChem, 2016,81(4):421-432. doi: 10.1002/cplu.201500395

    8. [8]

      LIN Xing-yi, ZHANG Yong, LI Ru-le, ZHAN Ying-ying, CHEN Chong-qi, YIN Ling. Catalytic properties of ZnO-modified copper ferrite catalysts in water-gas shift reaction[J]. J Fuel Chem Technol, 2014,42(11):1351-1356. doi: 10.3969/j.issn.0253-2409.2014.11.012 

    9. [9]

      MOREIRA M N, RIBEIRO A M, CUNHA A F, RODIGUES A E, ZABILSKIY M, DJINOVIC P, PINTAR A. Copper based materials for water-gas shift equilibrium displacement[J]. Appl Catal B:Environ, 2016,189:199-209. doi: 10.1016/j.apcatb.2016.02.046

    10. [10]

      ZHANG Y, CHEN C, LIN X, LI D, CHEN X, ZHAN Y, ZHENG Q. CuO/ZrO2 catalysts for water-gas shift reaction:Nature of catalytically active copper species[J]. Int J Hydrogen Energy, 2014,39(8):3746-3754. doi: 10.1016/j.ijhydene.2013.12.161

    11. [11]

      CHEN C, RUAN C, ZHAN Y, LIN X, ZHENG Q, WEI K. The significant role of oxygen vacancy in Cu/ZrO2 catalyst for enhancing water-gas-shift performance[J]. Int J Hydrogen Energy, 2014,39(1):317-324. doi: 10.1016/j.ijhydene.2013.10.074

    12. [12]

      CERÓN M, CALATAYUD M. Application of dual descriptor to understand the activity of Cu/ZrO2 catalysts in the water gas shift reaction[J]. J Mol Model, 2017,2334. doi: 10.1007/s00894-016-3183-x

    13. [13]

      XIA W, WANG F, MU X, CHEN K, TAKAHASHI A, NAKAMURA I, FUJITANI T. Highly selective catalytic conversion of ethanol to propylene over yttrium-modified zirconia catalyst[J]. Catal Commun, 2017,90:10-13. doi: 10.1016/j.catcom.2016.11.011

    14. [14]

      TAKANO H, KIRIHATA Y, IZUMIYA K, KUMAGAI N, HABAZAKI H, HASHIMOTO K. Highly active Ni/Y-doped ZrO2 catalysts for CO2 methanation[J]. Appl Surf Sci, 2016,388:653-663. doi: 10.1016/j.apsusc.2015.11.187

    15. [15]

      LABAKI M, SIFFERT S, LAMONIER J, ZHILINSKAYA E A, ABOUKAIS A. Total oxidation of propene and toluene in the presence of zirconia doped by copper and yttrium Role of anionic vacancies[J]. Appl Catal B:Environ, 2003,43(3):199-209.

    16. [16]

      CADI-ESSADEK A, ROLDAN A, DE LEEUW N H. Ni deposition on yttria-stabilized ZrO2(111) surfaces:a density functional theory study[J]. J Phys Chem C, 2015,119(12):6581-6591. doi: 10.1021/jp512594j

    17. [17]

      DOW W P, HUANG T J. Effects of oxygen vacancy of yttria-stabilized zirconia support on carbon monoxide oxidation over copper catalyst[J]. J Catal, 1994,147(1):322-332. doi: 10.1006/jcat.1994.1143

    18. [18]

      MARTINELLI M, JACOBS G, GRAHAM U M, SHAFER W D, CRONAUER D C, KROPF A J, MARSHALL C L, KHALID S, VISCONTI C G, LIETTI L, DAVIS B H. Water-gas shift:Characterization and testing of nanoscale YSZ supported Pt catalysts[J]. Appl Catal A:Gen, 2015,497:184-197. doi: 10.1016/j.apcata.2014.12.055

    19. [19]

      SHE Y S, LI L, ZHAN Y Y, LIN X Y, ZHENG Q, WEI K M. Effect of yttrium addition on water-gas shift reaction over CuO/CeO2 catalysts[J]. J Rare Earths, 2009,27(3):411-417. doi: 10.1016/S1002-0721(08)60262-8

    20. [20]

      GERVASINI A, BENNICI S. Dispersion and surface states of copper catalysts by temperature-programmed-reduction of oxidized surfaces (s-TPR)[J]. Appl Catal A:Gen, 2005,281(1/2):199-205.

    21. [21]

      HOANG D L, DANG T T H, ENGELDINGER J, SCHNEIDER M, RADNIK J, RICHTER M, MARTIN A. TPR investigations on the reducibility of Cu supported on Al2O3, zeolite Y and SAPO-5[J]. J Sol Stat Chem, 2011,184(8):1915-1923. doi: 10.1016/j.jssc.2011.05.042

    22. [22]

      LI Wei, CHI Ke-bin, MA Huai-jun, LIU Hao, QU Wei, TIAN Zhi-jian. Effect of supports on the catalytic performance of Pt/WO3-ZrO2 catalysts for hydroisomerization[J]. J Fuel Chem Technol, 2017,45(3):329-336.  

    23. [23]

      VERA C R, PIECK C L, SHIMIZU K, PARERA J M. Tetragonal structure, anionic vacancies and catalytic activity of SO42-ZrO2 catalysts for n-butane isomerization[J]. Appl Catal A:Gen, 2002,230(1/2):137-151.

    24. [24]

      CHAOPRADITH D T, SCANLON D O, CATLOW R A. Adsorption of water on yttria-stabilized zirconia[J]. J Phys Chem C, 2015,119(39):22526-22533. doi: 10.1021/acs.jpcc.5b06825

    25. [25]

      BEINIK I, HELLSTRÖM M, JENSEN , T N, BROQVIST P, LAURITSEN J V. Enhanced wetting of Cu on ZnO by migration of subsurface oxygen vacancies[J]. Nat Commun, 2015,68845. doi: 10.1038/ncomms9845

    26. [26]

      LAGUNA O H, PÉREZ A, CENTENO M A, ODRIOZOLA J A. Synergy between gold and oxygen vacancies in gold supported on Zr-doped ceria catalysts for the CO oxidation[J]. Appl Catal B:Environ, 2015,176-177:385-395. doi: 10.1016/j.apcatb.2015.04.019

    27. [27]

      HERNÁNDEZ W Y, ROMERO-SARRIA F, CENTENO M A, ODRIOZOLA J A. In situ characterization of the dynamic gold-support interaction over ceria modified Eu3+. Influence of the oxygen vacancies on the CO oxidation reaction[J]. J Phys Chem C, 2010,114(24):10857-10865. doi: 10.1021/jp1013225

    28. [28]

      SING K S W, EVERETT D H, HAUL R A W, MOSCOU L, PIEROTTI R A, ROUQUÉROL J, SIEMIENIEWSKA T. Reporting physisorption date for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure Appl Chem, 1985,57(4):603-619.

    29. [29]

      ZHAI Y, PIERRE D, SI R, DENG W, FERRIN P, NILEKAR A U, PENG G, HERRON J A, BELL D C, SALTSBURG H, FLYTZANI-STEPHANOPOULOS M. Alkali-stabilized Pt-OHx species catalyze low-temperature water-gas shift reactions[J]. Science, 2010,329:1633-1636. doi: 10.1126/science.1192449

    30. [30]

      SI R, RAITANO J, YI N, ZHANG L, CHAN S, FLYTZANI-STEPHANOPOULOS M. Structure sensitivity of the low-temperature water-gas shift reaction on Cu-CeO2 catalysts[J]. Catal Today, 2012,180(1):68-80. doi: 10.1016/j.cattod.2011.09.008

    31. [31]

      YANG M, ALLARD L F, FLYTZANI-STEPHANOPOULOS M. Atomically dispersed Au-(OH)x species bound on titania catalyze the low-temperature water-gas shift reaction[J]. J Am Chem Soc, 2013,135(10)3771.  

    32. [32]

      WITOON T, CHALORNGTHAM J, DUMRONGBUNDITKUL P, CHAREONPANICH M, LIMTRAKUL J. CO2 hydrogenation to methanol over Cu/ZrO2 catalysts:Effects of zirconia phases[J]. Chem Eng J, 2016,293:327-336. doi: 10.1016/j.cej.2016.02.069

    33. [33]

      MA Z Y, YANG C, WEI W, LI W H, SUN Y H. Surface properties and CO adsorption on zirconia polymorphs[J]. J Mol Catal A:Chem, 2005,227(1):119-124.

    34. [34]

      ZHAO Y, LI W, ZHANG M, TAO K. A comparison of surface acidic features between tetragonal and monoclinic nanostructured zirconia[J]. Catal Commun, 2002,3(6):239-245. doi: 10.1016/S1566-7367(02)00089-4

    35. [35]

      BASAHEL S N, MOKHTAR M, ALSHARAEH E H, ALI T T, MAHMOUD H A, NARASIMHARAO K. Physico-chemical and catalytic properties of mesoporous CuO-ZrO2 catalysts[J]. Catalysts, 2016,6(4)57. doi: 10.3390/catal6040057

    36. [36]

      RUI Z, HUANG Y, ZHENG Y, JI H, YU X. Effect of titania polymorph on the properties of CuO/TiO2 catalysts for trace methane combustion[J]. J Mol Catal A:Chem, 2013,372:128-136. doi: 10.1016/j.molcata.2013.02.026

    37. [37]

      KANG M Y, YUN H J, YU S, KIM W, KIM N D, Yi J. Effect of TiO2 crystalline phase on CO oxidation over CuO catalysts supported on TiO2[J]. J Mol Catal A:Chem, 2013,368-369:72-77. doi: 10.1016/j.molcata.2012.11.021

  • 加载中
    1. [1]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    2. [2]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    5. [5]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    6. [6]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    7. [7]

      Junjian WangQingquan YuShunyao LiuYuke ChenXiaoyu LiuGuodong LiXiaoyan LiuHong LiuWeijia Zhou . Laser-Induced Carbonization of Hydroxyapatite Sandwich Paper for Inkless Printing. Acta Physico-Chimica Sinica, 2024, 40(4): 2304024-0. doi: 10.3866/PKU.WHXB202304024

    8. [8]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    9. [9]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    10. [10]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    11. [11]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    12. [12]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    13. [13]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    14. [14]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    15. [15]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    16. [16]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    17. [17]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    18. [18]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    19. [19]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    20. [20]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

Metrics
  • PDF Downloads(1)
  • Abstract views(732)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return