Citation: ZHANG Ke-yi, CHEN Xue-li, MENG De-xi, GUO Xiao-lei, GONG Xin. Effect of adding coal ashes and oxide mixtures on CO2 gasification reactivity of petcoke at high temperature[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(3): 257-264. shu

Effect of adding coal ashes and oxide mixtures on CO2 gasification reactivity of petcoke at high temperature

  • Corresponding author: CHEN Xue-li, cxl@ecust.edu.cn
  • Received Date: 13 September 2017
    Revised Date: 21 December 2017

    Fund Project: The project was supported by the Fundamental Research Funds for the Central University (222201718003)the Fundamental Research Funds for the Central University 222201718003

Figures(9)

  • Three additives (combustion coal ash, coal gasification ash and oxide mixture) with similar chemical composition were added into petcoke by dry mixing and wet mixing. Their gasification reactivities under CO2 atmosphere were investigated by a Thermo gravimetric Analyzer (TGA) at 1200-1400℃.The influence of mixing method, coal ash content and phase components on petcoke catalytic gasification was studied. The oxide mixture was used to simulate the catalytic effect of actual coal ash at high temperature. The results indicate that gasification reaction rate of petroleum coke is accelerated with increasing amount of coal ash. Dry mixing and gasification coal ash has less obvious effects on catalytic activity at 1200 and 1300℃. But the mixing method and mode of active metal has little influence on gasification reaction of petcoke at 1400℃. It is because the molten ash keeps good contact with petcoke, which makes reactive metals more freely and enhances mass transfer resistance. The catalytic index of the oxide mixtures has linear relationship with content of Fe2O3 and CaO during petcoke gasification at high temperature. This means coal ashes with high content of Fe and Ca could accelerate CO2 gasification reactivity of petcoke.
  • 加载中
    1. [1]

      SHI Hui-xian, XIE Gang, YANG Meng, ZHONG Qi, YIN Yong. Review of petroleum coke industry application[J]. Carbon, 2012(3):35-39.  

    2. [2]

      CHEN J H, LU X F. Progress of petroleum coke combusting in circulating fluidized bed boilers-A review and future perspectives[J]. Resour Conserv Recy, 2007,49(3):203-216. doi: 10.1016/j.resconrec.2006.03.012

    3. [3]

      TANG Li-hua, CHEN Dong-xia, ZHU Xue-dong, WU Yong-qiang, NI Yan-hui, ZHU Zi-bin. Gasification reactivity of petroleum coke at high temperature[J]. J Fuel Chem Technol, 2005,33(6):687-691.  

    4. [4]

      LIU Jian-kun, YANG Tao, GUO Rong, FANG Xiang-chen. Analysis of measures to solve high sulfur petroleum coke[J]. Prog Chem, 2017,36(7):2417-2427.  

    5. [5]

      LI Y, YANG H P, HU J H. Effect of catalysts on the reactivity and structure evolution of char in petroleum coke steam gasification[J]. Fuel, 2014,117(Part B):1174-1180.  

    6. [6]

      MALEKSHAHIAN M, HILL J M. Potassium catalyzed CO2 gasification of petroleum coke at elevated pressures[J]. Fuel Process Technol, 2013,113:34-40. doi: 10.1016/j.fuproc.2013.03.017

    7. [7]

      LIU Ji. The high-temperature volatilization and solid reaction mechanism between sylvite and mineral[D]. Wuhan: Huazhong University of Science and Technology, 2014. 

    8. [8]

      REN Li-wei, WEI Rui-di, GAO Yu-hong, XIN Jing. Feasibility study on catalytic gasification of petroleum coke at high temperatures[J]. Acta Pet Sin (Pet Process Sect), 2017,33(5):893-900.  

    9. [9]

      ZHOU Z J, HU Q J, LIU X. Effect of iron species and calcium hydroxide on high-sulfur petroleum coke CO2 gasification[J]. Energy Fuels, 2012,26(3):1489-1495. doi: 10.1021/ef201442t

    10. [10]

      LI Qing-feng, FANG Yi-tian, ZHANG Jian-min, WANG Yang, SHI Ming-xian, SUN Guo-gang. Gasification of petroleum coke with additional coal ash[J]. J Combust Sci Techno, 2004,10(4):359-362.  

    11. [11]

      ZOU Jian-hui, ZHOU Zhi-jie, DAI Zheng-hua, LIU Hai-feng, WANG Fu-chen, YU Zun-hong. Effects of three industrial wastes on kinetic characteristics of petroleum coke CO2 gasification[J]. J Fuel Chem Technol, 2008,36(3):279-285.  

    12. [12]

      HUANG S, WU S Y, WU Y Q. Steam cogasification of petroleum coke and different rank coals for enhanced coke reactivity and hydrogen-rich gas production[J]. Energy Fuels, 2014,28(6):3614-3622. doi: 10.1021/ef500188p

    13. [13]

      REN L W, WEI R D, GAO Y H. Co-gasification reactivity of petcoke and coal at high temperature[J]. Fuel, 2017,190:245-252. doi: 10.1016/j.fuel.2016.11.020

    14. [14]

      HU Qi-jing, ZHOU Zhi-jie, LIU Xin, YU Guang-suo. Catalytic activity of ferric chloride for high-sulfur petroleum coke-carbon dioxide gasification[J]. Acta Pet Sin (Pet Process Sect), 2012, 28(3):463-469. 

    15. [15]

      HU X F, GUO Q H, LIU X. Ash fusion and viscosity behavior of coal ash with high content of Fe and Ca[J]. J Fuel Chem Technol, 2016,44(7):769-776.  

    16. [16]

      MAHINPEY N, GOMEZ A. Review of gasification fundamentals and new findings:Reactors, feedstock, and kinetic studies[J]. Chem Eng Sci, 2016,148:14-31. doi: 10.1016/j.ces.2016.03.037

    17. [17]

      BAI J, LI W, LI C Z. Influences of minerals transformation on the reactivity of high temperature char gasification[J]. Fuel Process Technol, 2010,91(4):404-409. doi: 10.1016/j.fuproc.2009.05.017

    18. [18]

      SUN Xue-lian, WANG Li, ZHANG Zhan-tao. Study on compound catalyst for gasification and its mechanism[J]. Coal Convers, 2006,29(01):15-18. doi: 10.3969/j.issn.1004-4248.2006.01.004

    19. [19]

      ZHAN X L, JIA J, ZHOU Z J. Influence of blending methods on the co-gasification reactivity of petroleum coke and lignite[J]. Energ Convers Manage, 2011,52(4):1810-1814. doi: 10.1016/j.enconman.2010.11.009

    20. [20]

      HUANG Sheng. Studies on physico-chemical properties and catalytic gasification characteristics of petroleum coke[D]. Shanghai: East China University of Science and Technology, 2013. 

    21. [21]

      LI wen, BAI Jin. Chemistry of Ash from Coal[M]. Beijing:Science Press, 2013:34-72.

    22. [22]

      LIU Xin. The research of the influence of pyrolysis and metal on petroleum coke gasification reactivity[D]. Shanghai: East China University of Science and Technology, 2012. 

    23. [23]

      JIANG M Q, RONG Z, JIE H. Calcium-promoted catalytic activity of potassium carbonate for steam gasification of coal char:Influences of calcium species[J]. Fuel, 2012,99(9):64-71.  

    24. [24]

      ASAMI K, SEARS R, FURIMSKY E, OHTSUKA Y. Gasification of brown coal and char with carbon dioxide in the presence of finely dispersed iron catalysts[J]. Fuel Process Technol, 1996,47:139-151. doi: 10.1016/0378-3820(96)01000-4

    25. [25]

      KIM R-G, HWNAG C-W, JEON C-H. Kinetics of coal char gasification with CO2:Impact of internal/external diffusion at high temperature and elevated pressure[J]. Appl Energy, 2014,129:299-307. doi: 10.1016/j.apenergy.2014.05.011

    26. [26]

      ZHOU Z J, HU Q J, LIU X. Effect of iron species and calcium hydroxide on high-sulfur petroleum coke CO2 gasification[J]. Energy and Fuels, 2012,26(3):1489-1495. doi: 10.1021/ef201442t

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    4. [4]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    5. [5]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    6. [6]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    7. [7]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    8. [8]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    11. [11]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    12. [12]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

    13. [13]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    14. [14]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052

    15. [15]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    18. [18]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    19. [19]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    20. [20]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

Metrics
  • PDF Downloads(3)
  • Abstract views(1816)
  • HTML views(149)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return