Citation: CHENG Chun-yuan, LIU Su-yao, WU Bao-shan. Support effects on ruthenium catalyst for the Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(5): 556-563. shu

Support effects on ruthenium catalyst for the Fischer-Tropsch synthesis

  • Corresponding author: WU Bao-shan, wbs@sxicc.ac.cn
  • Received Date: 16 January 2017
    Revised Date: 14 March 2017

    Fund Project: National Natural Science Foundation of China 21473229

Figures(8)

  • Series of Ru-based F-T synthesis catalysts, respectively with different supports of SiO2, Al2O3 and Beta zeolite, were prepared by impregnation method. Characterization techniques such as N2-adsorption, XRD, NH3-TPD, H2-TPR, H2-TPD, XPS and CO-DRIFTS were used to study the textural structure, phase, acidity, reduction behavior, chemical adsorption and electron properties of the catalysts. F-T synthesis performances of the catalysts were investigated as well. The results indicated that the supports imposed obvious effects on the reduction and dispersion of Ru, therefore led to the differences in acidity and surface properties of the catalysts. F-T reaction performance showed that the relatively stable Ru/SiO2 catalyst exhibited high selectivity to heavy hydrocarbons, ascribing to its less acidity, weaker metal-support interaction, and better Ru particle dispersion.
  • 加载中
    1. [1]

      HAMELINCK C, FAAIJ A, DENUIL H, BOERRIGTER H. Production of FT transportation fuels from biomass; technical options, process analysis and optimisation, and development potential[J]. Energy, 2004,29(11):1743-1771. doi: 10.1016/j.energy.2004.01.002

    2. [2]

      DRY M E. Fischer-Tropsch reactions and the environment[J]. Appl Catal A: Gen, 1999,189(2):185-190. doi: 10.1016/S0926-860X(99)00275-6

    3. [3]

      SCHULZ H. Short history and present trends of Fischer-Tropsch synthesis[J]. Appl Catal A: Gen, 1999,186(1/2):3-12.  

    4. [4]

      CLAEYS M, VAN STEEN E. On the effect of water during Fischer-Tropsch synthesis with a ruthenium catalyst[J]. Catal Today, 2002,71(3/4):419-427.  

    5. [5]

      BOUDART M, MCDONALD M A. Structure sensitivity of hydrocarbon synthesis from CO and H2[J]. J Phys Chem, 1984,88(11):2185-2195. doi: 10.1021/j150655a004

    6. [6]

      KING D. A Fischer-Tropsch study of supported ruthenium catalysts[J]. J Catal, 1978,51(3):386-397. doi: 10.1016/0021-9517(78)90277-4

    7. [7]

      STOOP F, VERBIEST A M G, VAN DER WIELE K. The influence of the support on the catalytic properties of Ru catalysts in the CO hydrogenation[J]. Appl Catal, 1986,25(1/2):51-57.  

    8. [8]

      IGLESIA E. Fischer-Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity[J]. J Catal, 1992,137(1):212-224. doi: 10.1016/0021-9517(92)90150-G

    9. [9]

      JOSEFINA P-Z M, MURIEL D, YANN H, ANNE G, LUCIEN L, GINETTE L, MIREYA G, LUISA C M, GEOFFREY B. Characterization and reactivity of Ru/single oxides catalysts for the syngas reaction[J]. Appl Catal A: Gen, 2004,274(1-2):295-301. doi: 10.1016/j.apcata.2004.07.013

    10. [10]

      WANG Ye, CHENG Kang, ZHANG Qing-hong. Selectivity tuning for the hydrogenation of carbon monoxide into hydrocarbons[J]. Sci China Chem, 2012,42(4):363-375.  

    11. [11]

      WANG Zi-qing, ZHANG Liu-ming, LIN Jian-xin, WANG Rong, WEI Ke-mei. Preparation and application of nanometer materials supported ruthenium catalysts[J]. Chin J Catal, 2012,33(3):377-388.  

    12. [12]

      LI Bo, SHAO Ling-ling. Appraisal of alumina and aluminium hydroxide by XRD[J]. Inorg Chem Ind, 2008,40(2):54-57.  

    13. [13]

      CHENG K, KANG J, HUANG S, YOU Z, ZHANG Q, DING J, HUA W, LOU Y, DENG W, WANG Y. Mesoporous Beta zeolite-supported ruthenium nanoparticles for selective conversion of synthesis gas to C5-C11 isoparaffins[J]. ACS Catal, 2012,2(3):441-449. doi: 10.1021/cs200670j

    14. [14]

      CHEN L, LI Y, ZHANG X, ZHANG Q, WANG T, MA L. Mechanistic insights into the effects of support on the reaction pathway for aqueous-phase hydrogenation of carboxylic acid over the supported Ru catalysts[J]. Appl Catal A: Gen, 2014,478:117-128. doi: 10.1016/j.apcata.2014.03.038

    15. [15]

      SUN J, LI X, TAGUCHI A, ABE T, NIU W, LU P, YONEYAMA Y, TSUBAKI N. Highly-dispersed metallic Ru nanoparticles sputtered on H-Beta zeolite for directly converting syngas to middle isoparaffins[J]. ACS Catal, 2014,4(1):1-8. doi: 10.1021/cs4008842

    16. [16]

      HOSOKAWA S, NOGAWA S, TANIGUCHI M, UTANI K, KANAI H, IMAMURA S. Oxidation characteristics of Ru/CeO2 catalyst[J]. Appl Catal A: Gen, 2005,288(1/2):67-73.  

    17. [17]

      FU X, YU H, PENG F, WANG H, QIAN Y. Facile preparation of RuO2/CNT catalyst by a homogenous oxidation precipitation method and its catalytic performance[J]. Appl Catal A: Gen, 2007,321(2):190-197. doi: 10.1016/j.apcata.2007.02.002

    18. [18]

      NIU T, LIU G L, LIU Y. Preparation of Ru/graphene-meso-macroporous SiO2 composite and their application to the preferential oxidation of CO in H2-rich gases[J]. Appl Catal B: Environ, 2014,154:82-92.  

    19. [19]

      CHEN L, ZHU Y, ZHENG H, ZHANG C, ZHANG B, LI Y. Aqueous-phase hydrodeoxygenation of carboxylic acids to alcohols or alkanes over supported Ru catalysts[J]. J Mol Catal A: Chem, 2011,351:217-227. doi: 10.1016/j.molcata.2011.10.015

    20. [20]

      BERNAS A, KUMAR N, LAUKKANEN P, VÄYRYNEN J, SALMI T, MURZIN D Y. Influence of ruthenium precursor on catalytic activity of Ru/Al2O3 catalyst in selective isomerization of linoleic acid to cis-9, trans-11-and trans-10, cis-12-conjugated linoleic acid[J]. Appl Catal A: Gen, 2004,267(1/2):121-133.  

    21. [21]

      LIN H Y, CHEN Y W. The kinetics of H2 adsorption on supported ruthenium catalysts[J]. Thermochim Acta, 2004,419(1/2):283-290.

    22. [22]

      MARTÍNEZ-PRIETO L M, CARENCO S, WU C H, BONNEFILLE E, AXNANDA S, LIU Z, FAZZINI P F, PHILIPPOT K, SALMERON M, CHAUDRET B. Organometallic ruthenium nanoparticles as model catalysts for CO hydrogenation: A nuclear magnetic resonance and ambient-pressure X-ray photoelectron spectroscopy study[J]. ACS Catal, 2014,4(9):3160-3168. doi: 10.1021/cs5010536

    23. [23]

      CHIN S Y, WILLIAMS C T, AMIRIDIS M D. FTIR studies of CO adsorption on Al2O3 and SiO2 supported Ru catalysts[J]. J Phys Chem B, 2006,110(2):871-82. doi: 10.1021/jp053908q

    24. [24]

      ELMASIDES C, KONDARIDES D I, GRVNERT W, VERYKIOS X E. XPS and FT-IR Study of Ru/Al2O3 and Ru/TiO2 catalysts: Reduction characteristics and interaction with a methane-oxygen mixture[J]. J Phys Chem B, 1999,103(25):5227-5239. doi: 10.1021/jp9842291

    25. [25]

      LIUZZI D, PÉREZ-ALONSO F J, GARCÍA-GARCÍA F J, CALLE-VALLEJO F, FIERRO J L G, ROJAS S. Identifying the time-dependent predominance regimes of step and terrace sites for the Fischer-Tropsch synthesis on ruthenium based catalysts[J]. Catal Sci Technol, 2016,6(17):6495-6503. doi: 10.1039/C6CY00476H

    26. [26]

      VAN SANTEN R A, GHOURI M M, SHETTY S, HENSEN E M H. Structure sensitivity of the Fischer-Tropsch reaction; molecular kinetics simulations[J]. Catal Sci Technol, 2011,1(6):891-911. doi: 10.1039/c1cy00118c

    27. [27]

      SHETTY S, JANSEN A P, VAN SANTEN R A. Direct versus hydrogen-assisted CO dissociation[J]. J Am Chem Soc, 2009,131(36):12874-5. doi: 10.1021/ja9044482

    28. [28]

      TISON Y, NIELSEN K, MOWBRAY D J, BECH L, HOLSE C, CALLE-VALLEJO F, ANDERSEN K, MORTENSEN J J, JACOBSEN K W, NIELSEN J H. Scanning tunneling microscopy evidence for the dissociation of carbon monoxide on ruthenium steps[J]. J Phys Chem C, 2012,116(27):14350-14359. doi: 10.1021/jp302424g

    29. [29]

      GONZÁLEZ-CARBALLO J M, PÉREZ-ALONSO F J, OJEDA M, GARCÍA-GARCÍA F J, FIERRO J L G, ROJAS S. Evidences of two-regimes in the measurement of Ru particle size effect for CO dissociation during Fischer-Tropsch synthesis[J]. ChemCatChem, 2014,6(7):2084-2094. doi: 10.1002/cctc.v6.7

    30. [30]

      SHINCHO E, EGAWA C, NAITO S, TAMARU K. The behaviour of CO adsorbed on Ru (1, 1, 1, 0) and Ru (001); the dissociation of CO at the step sites of the Ru (1, 1, 1, 0) surface[J]. Surf Sci, 1985,149(1):1-16. doi: 10.1016/S0039-6028(85)80009-1

    31. [31]

      BARTHOLOMEW C H. Mechanisms of catalyst deactivation[J]. Appl Catal A: Gen, 2001,212(1/2):17-60.  

    32. [32]

      HE J, YONEYAMA Y, XU B, NISHIYAMA N, TSUBAKI N. Designing a capsule catalyst and its application for direct synthesis of middle isoparaffins[J]. Langmuir, 2005,21(5):1699-1702. doi: 10.1021/la047217h

  • 加载中
    1. [1]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    2. [2]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    3. [3]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    4. [4]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    5. [5]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    6. [6]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    7. [7]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    8. [8]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    9. [9]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    10. [10]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    11. [11]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    12. [12]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    13. [13]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    14. [14]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    15. [15]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    16. [16]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    17. [17]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    18. [18]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    19. [19]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    20. [20]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

Metrics
  • PDF Downloads(8)
  • Abstract views(1788)
  • HTML views(532)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return