Citation: SUN Jiao, WANG Ya-li, XIE Xin-an, LI Wei, LI Lu, LI Yan, FAN Di, WEI Xing. Effect of liquefaction parameters of cornstalk cellulose in sub-supercritical methanol on dominant chemical products[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(6): 660-668. shu

Effect of liquefaction parameters of cornstalk cellulose in sub-supercritical methanol on dominant chemical products

  • Corresponding author: XIE Xin-an, xinanxie@scau.edu.cn
  • Received Date: 27 February 2017
    Revised Date: 6 April 2017

    Fund Project: the National Natural Science Foundation of China 21176097the National Natural Science Foundation of China 21576107Guangdong Provincial Science and Technology Program Foundation of China 2014A010106024

Figures(9)

  • The direct liquefaction of cornstalk cellulose in sub-supercritical methanol using an autoclave was investigated under reaction temperature range of 240-320℃, methanol dosage range of 0-200 mL and reaction time range of 0-200 min. The effects of various liquefaction parameters on the yields of bio-oil and dominant components (alkanes, esters, acids and alcohols, etc.) obtained from cornstalk cellulose liquefaction were investigated combining with GC/MS. The results show that the cellulose is transformed to alkanes, esters and alcohols, and the increasing of reaction temperature and methanol dosage can result in an increase in the yields of water soluble organic matter, heavy oil and various chemicals. The yield of bio-oil reaches to 25.1% under the optimum operating conditions:methanol dosage is 160 mL; reaction temperature is 320℃; reaction time is 30 min. The relative contents of dominant components in bio-oil are in the order:alkanes > alcohols > esters > acids, with the highest relative contents of 77.2%, 19.0%, 30.9%, 20.8%, respectively. The reaction temperature and methanol dosage have an obvious influence on the distribution and yields of dominant chemicals. As the reaction temperature and methanol dosage further increases, the concentration and activity of free radical will increase, and the components of alcohols and esters can be oxidized and condensed to transform into acids and so on when the reaction temperature and methanol usage are more than 160 mL and 300℃, respectively, leading to a decline in the yields of chemicals and bio-oil.
  • 加载中
    1. [1]

      TIAN Yuan-yu, QIAO Ying-yun. Challenges and technical options of biomass liquefaction technology[J]. Sino-Global Energy, 2014,19(2):19-24.  

    2. [2]

      TOOR S S, ROSENDAHL L, RUDOLF A. Hydrothermal liquefaction of biomass:A review of subcritical water technologies[J]. Energy, 2011,36(5):2328-2342. doi: 10.1016/j.energy.2011.03.013

    3. [3]

      HE Yu-feng, QIAN Wen-zhen, WANG Jian-feng, XIONG Yubing, SONG Pengfei, WANG Rongmin. High value-added reutilization approach for waste biomass materials[J]. Trans Chin Soc Agric Eng, 2016,32(15):1-8. doi: 10.11975/j.issn.1002-6819.2016.15.001

    4. [4]

      WANG XIAO-juan, FENG Hao, WANG Bin, LI ZHI-yi. Investigation of two-step pretreatment method for production of ethanol from lignocellulosic biomass[J]. Trans Chin Soc Agric Eng, 2012,28(5):194-200.  

    5. [5]

      SALMAN H, NINA A, MINNA H. Chemo-selective high yield microwave assisted reaction turns cellulose to green chemicals[J]. Carbohydr Polym, 2014,112:448-457. doi: 10.1016/j.carbpol.2014.06.011

    6. [6]

      LU Ran-ran, SHANG Hui, LI Jun. Research progress on biomass pyrolysis technology for liquid oil production[J]. Biomass Chem Eng, 2010,44(3):54-59.  

    7. [7]

      ZHENG Chao-yang, XIE Xin-an, TAO Hong-xiu, ZHENG Lu-si, LI Yan. Depolymerization of stalk cellulose during its liquefaction in Sub-and supercritical ethanol[J]. J Fuel Chem Technol, 2012,40(5):526-532.  

    8. [8]

      LIU Z G, ZHANG F S. Effects of various solvents on the liquefaction of biomass to produce fuels and chemical feedstocks[J]. Energy Convers Manage, 2008,49(12):3498-3504. doi: 10.1016/j.enconman.2008.08.009

    9. [9]

      LI Q Y, LIU D, HOU X L, WUA P P, SONG L H, YAN Z F. Hydro-liquefaction of microcrystalline cellulose, xylan and industrial lignin in different supercritical solvents[J]. Bioresour Technol, 2016,219:281-288. doi: 10.1016/j.biortech.2016.07.048

    10. [10]

      LI Xiao-hua, JIAO Li-hua, FAN Yong-sheng, CHEN Lei, CAI Yi-xi. Effects of cellulose, xylan and lignin content on biomass pyrolysis characteristics and product distribution[J]. Trans Chin Soc Agric Eng, 2015,31(13):236-243. doi: 10.11975/j.issn.1002-6819.2015.13.033

    11. [11]

      ZHU Dao-fei, WANG Hua, BAO Gui-rong. The experimental research on liquefaction of cellulose in sub-critical and supercritical water[J]. Energy Eng, 2004,5(2):6-10.  

    12. [12]

      ZHANG Yong-fa, LI Xiang-lan, SHI Yu-liang, XU Ying. Study on CaO catalytic high-pressure pyrolysis liquefaction of cornstalk in supercritical methanol[J]. J Taiyuan Univ Technol, 2010,41(5):512-517.  

    13. [13]

      LI Xian, XIE Xin-an, ZHENG Chao-yang, LI Yan. Liquefaction reaction process and mechanism of cornstalk in sub/super critical cyclohexane[J]. Trans Chin Soc Agric Eng, 2011,27(2):119-124.  

    14. [14]

      LI Wei, XIE Xin-an, TANG Cheng-zheng, LI Yan, LI Lu, WANG Ya-li, WEI Xing, FAN Di. Effects of hydroxyl and hydrogen free radicals on the liquefaction of cellulose in sub/supercritical ethanol[J]. J Fuel Chem Technol, 2016,44(4):415-421.  

    15. [15]

      TAO Hong-xiu, XIE Xin-an, TANG Cheng-zheng, TIAN Wen-guang. Mechanism of ketones formation from cellulose liquefaction in the sub-and supercritical ethanol[J]. J Fuel Chem Technol, 2013,41(1):60-66.  

    16. [16]

      WANG Zhi. Catalytic fast pyrolysis of biomass to prepare high-value chemicals[D]. Hefei:University of Science and Technology of China, 2011.

    17. [17]

      TAO Hong-xiu, XIE Xin-an, TANG Cheng-zheng, TIAN Wen-guang. Mechanism of ketones formation from cellulose liquefaction in sub-and supercritical ethanol[J]. J Fuel Chem Technol, 2013,41(1):60-66.  

    18. [18]

      ZHAO Wei. Liquefaction of crop stalks in sub and supercritical alcohols[D]. Jiangsu:China University of Mining and Technology, 2009.

    19. [19]

      SOARES S, RICARDO N M P S, JONES S, HEATLEY F. High temperature thermal degradation of cellulose in air studied using FTIR and 1 H and 13 C solid-state NMR[J]. European Polymer J, 2001,37(4):737-745. doi: 10.1016/S0014-3057(00)00181-6

    20. [20]

      YU Shu-feng. Experimental study on liquefaction of agricultural residues[D]. Beijing:Beijing University of Chemical Technology, 2005.

    21. [21]

      TAO Hong-xiu, XIE Xin-an, TANG Cheng-zheng, TIAN Wen-guang. Mechanism of ketones formation from cellulose liquefaction in sub-and supercritical ethanol[J]. J Fuel Chem Technol, 2013,41(1):60-66.  

    22. [22]

      SALEHI E, ABEDI J, HARDING T. Bio-oil from sawdust:Effect of operating parameters on the yield and quality of pyrolysis products[J]. Energy Fuels, 2011,25(9):4145-4154. doi: 10.1021/ef200688y

    23. [23]

      PERAZA A, SÁNCHEZ M, RUETTE F. Modeling free-radical reactions, produced by hydrocarbon cracking, with asphaltenes[J]. Energy Fuels, 2010,24(7):3990-3997. doi: 10.1021/ef1003057

    24. [24]

      GONG Gui-fen, ZHANG Ming-yu, HUANG Yu-dong, ZHANG Yu-jun, QIN Xing-zhen. The experimental research on liquefaction of lignocellulose in sub-critical and supercritical water[J]. Appl Chem Ind, 2008,37(11):1275-1277.  

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    3. [3]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    4. [4]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    5. [5]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    6. [6]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    7. [7]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    10. [10]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    11. [11]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    12. [12]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    13. [13]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    14. [14]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    15. [15]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    16. [16]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    17. [17]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    18. [18]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    19. [19]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    20. [20]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

Metrics
  • PDF Downloads(0)
  • Abstract views(631)
  • HTML views(85)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return