Citation: BAI Yun-po, YANG Yong, WANG Jue, ZHENG Lin, LIAN Peng-fei, QING Ming, WANG You-liang, WANG Hong, ZHANG Guang-ji. Effect of carbonization process on the strength and structure of Fe-based Fischer-Tropsch synthesis catalyst[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(2): 204-210. shu

Effect of carbonization process on the strength and structure of Fe-based Fischer-Tropsch synthesis catalyst

Figures(10)

  • In order to gain an insight into the relationship between pretreatment condition and catalyst attrition resistance, an iron-based model catalyst for Fisher-Tropsch synthesis was carburized at 300℃ for different times and extensively characterized by multiple techniques; the effect of carburization and carbon deposition on the catalyst attrition resistance was then investigated.The results indicated that at the initial stage of pretreatment, the carbide content increases with the increase of carburization time, whereas the BET surface area and particle size are decreased, leading to an increase in the catalyst attrition resistance.With further increasing the carburization time above 72 h, the carbide content keeps almost constant, whereas the carbon deposition content, particle size and catalyst weight are increased, accompanying with a decrease in the attrition resistance.
  • 加载中
    1. [1]

      LI Juan, WU Liang-peng, QIU Yong, DING Ming-yue, WANG Tie-jun, LI Xin-jun, MA Long-long. LI Juan, WU Liang-peng, QIU Yong, DING Ming-yue, WANG Tie-jun, LI Xin-jun, MA Long-long.Research progress of catalysts for Fischer Tropsch synthesis[J]. Chem Ind Eng Prog, 2013,32(s1):100-109.  

    2. [2]

      DAVIS B H. Fischer-Tropsch synthesis:Reaction mechanisms for iron catalysts[J]. Catal Today, 2009,141(1):25-33.  

    3. [3]

      DRY M E, HOOGENDOORN J C. Technology of the Fischer-Tropsch process[J]. Cat Rev-Sci Eng, 1981,23(1/2):265-278.  

    4. [4]

      DRY M E. The Fischer-Tropsch process:1950-2000[J]. Catal Today, 2002,71(3):227-241.  

    5. [5]

      DRY M E. The Fischer-Tropsch process-commercial aspects[J]. Catal Today, 1990,6(3):183-206. doi: 10.1016/0920-5861(90)85002-6

    6. [6]

      KROGH A. A review on coal-to-liquid fuels and its coal consumption[J]. Int J Energy Res, 2010,34(10):848-864. doi: 10.1002/er.v34:10

    7. [7]

      SHROFF M D, KALAKKAD D S, COULTER K E, KOHLER S D, HARRINGTON M S, JACKSON N B. Activation of precipitated iron Fischer-Tropsch synthesis catalysts[J]. J Catal, 1995,156(2):185-207. doi: 10.1006/jcat.1995.1247

    8. [8]

      BUKUR D B, OKABE K, ROSYNEK M P, LI C P, WANG D J. Activation studies with a precipitated iron catalyst for Fischer-Tropsch synthesis.Ⅰ.Characterization studies[J]. J Catal, 1995,155(2):353-365. doi: 10.1006/jcat.1995.1217

    9. [9]

      BUKUR D B. Activation studies with a precipitated iron catalysts for Fischer-Tropsch synthesis.Ⅱ.Reaction studies[J]. J Catal, 1995,155(2):366-375. doi: 10.1006/jcat.1995.1218

    10. [10]

      AMELSE J A, BUTT J B, SCHWARTZ L H. Carburization of supported iron synthesis catalysts[J]. J Phys Chem B, 1978,82(5):558-563. doi: 10.1021/j100494a012

    11. [11]

      REYMOND J P, MÉRIAUDEAU P, TEICHNER S J. Changes in the surface structure and composition of an iron catalyst of reduced or unreduced Fe2O3, during the reaction of carbon monoxide and hydrogen[J]. J Catal, 1982,75(1):39-48. doi: 10.1016/0021-9517(82)90119-1

    12. [12]

      KALAKKAD D S, SHROFF M D, KÖHLER S, JACKSON N, DATYE A K. Attrition of precipitated iron Fischer-Tropsch catalysts[J]. Appl Catal A:Gen, 1995,133(2):335-350. doi: 10.1016/0926-860X(95)00200-6

    13. [13]

      ZHAO R, GOODWIN J G, JOTHIMURUGESAN , SANTOSH K, GANGWAL S K, SPIVEY J J. Spray-dried iron Fischer-Tropsch catalysts.1.Effect of structure on the attrition resistance of the catalysts in the calcined state[J]. Ind Eng Chem Res, 2001,40(4):1065-1075. doi: 10.1021/ie000644f

    14. [14]

      ZHAO R, SUDSAKORN K, GOODWIN J G, JOTHIMURUGESAN K, SANTOSH K, GANGWAL , SPIVEY J J. Attrition resistance of spray-dried iron F-T catalysts:Effect of activation conditions[J]. Catal Today, 2002,71(3):319-326.  

    15. [15]

      ZHAO R, GOODWIN J G, JOTHIMURUGESAN , SANTOSH K, GANGWAL S K, SPIVEY J J. Spray-dried Iron Fischer-Tropsch catalysts.2.Effect of carburization on catalyst attrition resistance[J]. Ind Eng Chem Res, 2001,40(5):1320-1328. doi: 10.1021/ie0006458

    16. [16]

      BAI Liang. Reaction engineering study on slurry fischer-tropsch synthesis over iron-based catalysts[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2004.

    17. [17]

      YANG Y, XIANG H W, TIAN L, WANG H, ZHANG C H, TAO Z C. Structure and Fischer-Tropsch performance of iron-manganese catalyst incorporated with SiO2[J]. Appl Catal A:Gen, 2005,284(1):105-122.  

    18. [18]

      QING Ming. Support effects of the iron-based catalysts for Fischer-Tropsch synthesis[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2011.

    19. [19]

      SUO H Y, WANG S, ZHANG C H, XU J, WU B S, YANG Y. Chemical and structural effects of silica in iron-based Fischer-Tropsch synthesis catalysts[J]. J Catal, 2012,286(2):111-123.  

    20. [20]

      NING W, KOIZUMI N, CHANG H, MOCHIZUKI T, ITOH T, YAMADA M. Phase transformation of unpromoted and promoted Fe catalysts and the formation of carbonaceous compounds during Fischer-Tropsch synthesis reaction[J]. Appl Catal A:Gen, 2006,312(9):35-44.  

    21. [21]

      XU J, BARTHOLOMEW C H. Temperature-programmed hydrogenation (TPH) and in situ Mössbauer spectroscopy studies of carbonaceous species on silica-supported iron Fischer-Tropsch catalysts[J]. J Phys Chem B, 2005,109(6):2392-2403. doi: 10.1021/jp048808j

  • 加载中
    1. [1]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    2. [2]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    3. [3]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    4. [4]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    5. [5]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    6. [6]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    7. [7]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    8. [8]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    9. [9]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    10. [10]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    11. [11]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    12. [12]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    13. [13]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    14. [14]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    15. [15]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    16. [16]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    17. [17]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    18. [18]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    19. [19]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(6)
  • Abstract views(2302)
  • HTML views(1220)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return