Citation: BAI Yun-po, YANG Yong, WANG Jue, ZHENG Lin, LIAN Peng-fei, QING Ming, WANG You-liang, WANG Hong, ZHANG Guang-ji. Effect of carbonization process on the strength and structure of Fe-based Fischer-Tropsch synthesis catalyst[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(2): 204-210. shu

Effect of carbonization process on the strength and structure of Fe-based Fischer-Tropsch synthesis catalyst

Figures(10)

  • In order to gain an insight into the relationship between pretreatment condition and catalyst attrition resistance, an iron-based model catalyst for Fisher-Tropsch synthesis was carburized at 300℃ for different times and extensively characterized by multiple techniques; the effect of carburization and carbon deposition on the catalyst attrition resistance was then investigated.The results indicated that at the initial stage of pretreatment, the carbide content increases with the increase of carburization time, whereas the BET surface area and particle size are decreased, leading to an increase in the catalyst attrition resistance.With further increasing the carburization time above 72 h, the carbide content keeps almost constant, whereas the carbon deposition content, particle size and catalyst weight are increased, accompanying with a decrease in the attrition resistance.
  • 加载中
    1. [1]

      LI Juan, WU Liang-peng, QIU Yong, DING Ming-yue, WANG Tie-jun, LI Xin-jun, MA Long-long. LI Juan, WU Liang-peng, QIU Yong, DING Ming-yue, WANG Tie-jun, LI Xin-jun, MA Long-long.Research progress of catalysts for Fischer Tropsch synthesis[J]. Chem Ind Eng Prog, 2013,32(s1):100-109.  

    2. [2]

      DAVIS B H. Fischer-Tropsch synthesis:Reaction mechanisms for iron catalysts[J]. Catal Today, 2009,141(1):25-33.  

    3. [3]

      DRY M E, HOOGENDOORN J C. Technology of the Fischer-Tropsch process[J]. Cat Rev-Sci Eng, 1981,23(1/2):265-278.  

    4. [4]

      DRY M E. The Fischer-Tropsch process:1950-2000[J]. Catal Today, 2002,71(3):227-241.  

    5. [5]

      DRY M E. The Fischer-Tropsch process-commercial aspects[J]. Catal Today, 1990,6(3):183-206. doi: 10.1016/0920-5861(90)85002-6

    6. [6]

      KROGH A. A review on coal-to-liquid fuels and its coal consumption[J]. Int J Energy Res, 2010,34(10):848-864. doi: 10.1002/er.v34:10

    7. [7]

      SHROFF M D, KALAKKAD D S, COULTER K E, KOHLER S D, HARRINGTON M S, JACKSON N B. Activation of precipitated iron Fischer-Tropsch synthesis catalysts[J]. J Catal, 1995,156(2):185-207. doi: 10.1006/jcat.1995.1247

    8. [8]

      BUKUR D B, OKABE K, ROSYNEK M P, LI C P, WANG D J. Activation studies with a precipitated iron catalyst for Fischer-Tropsch synthesis.Ⅰ.Characterization studies[J]. J Catal, 1995,155(2):353-365. doi: 10.1006/jcat.1995.1217

    9. [9]

      BUKUR D B. Activation studies with a precipitated iron catalysts for Fischer-Tropsch synthesis.Ⅱ.Reaction studies[J]. J Catal, 1995,155(2):366-375. doi: 10.1006/jcat.1995.1218

    10. [10]

      AMELSE J A, BUTT J B, SCHWARTZ L H. Carburization of supported iron synthesis catalysts[J]. J Phys Chem B, 1978,82(5):558-563. doi: 10.1021/j100494a012

    11. [11]

      REYMOND J P, MÉRIAUDEAU P, TEICHNER S J. Changes in the surface structure and composition of an iron catalyst of reduced or unreduced Fe2O3, during the reaction of carbon monoxide and hydrogen[J]. J Catal, 1982,75(1):39-48. doi: 10.1016/0021-9517(82)90119-1

    12. [12]

      KALAKKAD D S, SHROFF M D, KÖHLER S, JACKSON N, DATYE A K. Attrition of precipitated iron Fischer-Tropsch catalysts[J]. Appl Catal A:Gen, 1995,133(2):335-350. doi: 10.1016/0926-860X(95)00200-6

    13. [13]

      ZHAO R, GOODWIN J G, JOTHIMURUGESAN , SANTOSH K, GANGWAL S K, SPIVEY J J. Spray-dried iron Fischer-Tropsch catalysts.1.Effect of structure on the attrition resistance of the catalysts in the calcined state[J]. Ind Eng Chem Res, 2001,40(4):1065-1075. doi: 10.1021/ie000644f

    14. [14]

      ZHAO R, SUDSAKORN K, GOODWIN J G, JOTHIMURUGESAN K, SANTOSH K, GANGWAL , SPIVEY J J. Attrition resistance of spray-dried iron F-T catalysts:Effect of activation conditions[J]. Catal Today, 2002,71(3):319-326.  

    15. [15]

      ZHAO R, GOODWIN J G, JOTHIMURUGESAN , SANTOSH K, GANGWAL S K, SPIVEY J J. Spray-dried Iron Fischer-Tropsch catalysts.2.Effect of carburization on catalyst attrition resistance[J]. Ind Eng Chem Res, 2001,40(5):1320-1328. doi: 10.1021/ie0006458

    16. [16]

      BAI Liang. Reaction engineering study on slurry fischer-tropsch synthesis over iron-based catalysts[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2004.

    17. [17]

      YANG Y, XIANG H W, TIAN L, WANG H, ZHANG C H, TAO Z C. Structure and Fischer-Tropsch performance of iron-manganese catalyst incorporated with SiO2[J]. Appl Catal A:Gen, 2005,284(1):105-122.  

    18. [18]

      QING Ming. Support effects of the iron-based catalysts for Fischer-Tropsch synthesis[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2011.

    19. [19]

      SUO H Y, WANG S, ZHANG C H, XU J, WU B S, YANG Y. Chemical and structural effects of silica in iron-based Fischer-Tropsch synthesis catalysts[J]. J Catal, 2012,286(2):111-123.  

    20. [20]

      NING W, KOIZUMI N, CHANG H, MOCHIZUKI T, ITOH T, YAMADA M. Phase transformation of unpromoted and promoted Fe catalysts and the formation of carbonaceous compounds during Fischer-Tropsch synthesis reaction[J]. Appl Catal A:Gen, 2006,312(9):35-44.  

    21. [21]

      XU J, BARTHOLOMEW C H. Temperature-programmed hydrogenation (TPH) and in situ Mössbauer spectroscopy studies of carbonaceous species on silica-supported iron Fischer-Tropsch catalysts[J]. J Phys Chem B, 2005,109(6):2392-2403. doi: 10.1021/jp048808j

  • 加载中
    1. [1]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    2. [2]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    3. [3]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    4. [4]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    5. [5]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    6. [6]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    7. [7]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    8. [8]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    9. [9]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    10. [10]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    11. [11]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    12. [12]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    14. [14]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    20. [20]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

Metrics
  • PDF Downloads(6)
  • Abstract views(2242)
  • HTML views(1204)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return