Citation: Qian Chen, Qian Ying, Cui Siqi, Wang Jingjing. Fullerene/Cyclodextrin Composite Materials and Their Application in Biomedicine[J]. Chemistry, ;2019, 82(5): 399-403. shu

Fullerene/Cyclodextrin Composite Materials and Their Application in Biomedicine

Figures(4)

  • Fullerene, a spherical carbon allotrope, with excellent photoelectric and biological properties has attracted special attention in the field of biomedicine. Cyclodextrin, a cone-shaped cyclic oligosaccharide, with well-solubility, good biocompatibility and specific inclusion property plays an important role in host-guest chemistry. The fullerene/cyclodextrin composite materials, which combine the advantages of fullerene and cyclodextrin, provide excellent performance in DNA cleavage, photodynamic therapy, drug carriers and other biomedicine fields. Based on the construction of fullerene/cyclodextrin systems, the research progress in non-covalent and covalent composite materials of fullerene/cyclodextrin were reviewed and the application of fullerene/cyclodextrin composite materials is prospected. It provides a reference for the construction of new fullerene/cyclodextrin composite materials.
  • 加载中
    1. [1]

      Q Xie, E P Cordero, L Echegoyen. J. Am. Chem. Soc., 1992, 114(10):3978~3980. 

    2. [2]

      J W Arbogast, C S Foote. J. Am. Chem. Soc., 1991, 113(23):8886~8889. 

    3. [3]

      G H Al, N Thamwattana, B J Cox et al. Bull. Math. Biol., 2015, 77(1):184. 

    4. [4]

      Z G Luo, X M Xu, X M Zhang et al. Mini-Rev. Med. Chem., 2013, 13(8):1160~1165. 

    5. [5]

      A Hoshikawa, M Nagira, M Tane et al. Biol. Pharm. Bull., 2018, 41(6):908~914. 

    6. [6]

      S Loethen, J M Kim, D H Thompson. Polym. Rev., 2007, 47(3):383~418. 

    7. [7]

      M E Brewster, T Loftsson. Adv. Drug Delivery Rev., 2007, 59(7):645~666. 

    8. [8]

      A Ikeda. J. Inclu. Phenom. Macrocycl. Chem., 2013, 77(1~4):49~65. 

    9. [9]

      S Xia, S X Song, X Y Ren et al. Soft Matter, 2017, 13(36):6059~6067. 

    10. [10]

      Y Q Yang, L Guan, G H Gao. ACS Appl. Mater. Interf., 2018, 10(16):13975~13984. 

    11. [11]

      X Zhu, S Xiao, D Zhou et al. Eur. J. Med. Chem., 2018, 146:194~205. 

    12. [12]

      A Gogoi, M Navgire, K C Sarma et al. RSC Adv., 2017, 7(64):40371~40382. 

    13. [13]

      K Hashiba, Y Sato, H Harashima. J. Control. Release, 2017, 262:239~246. 

    14. [14]

       

    15. [15]

      T Andersson, K Nilsson, M Sundahl et al. Chem. Commun., 1992, 8:604~606.

    16. [16]

      I Nakanishi, S Fukuzumi, T Konishi et al. J. Phys. Chem. B, 2015, 106(9):2372~2380. 

    17. [17]

      Y Nishibayashi, M Saito, S Uemura et al. Nature, 2004, 428(6980):279~280.

    18. [18]

      A Quaranta, H H Qu, T Vencel et al. Chem. Phys. Lett., 2014, 614:234~237. 

    19. [19]

      K E Geckeler, S Samal. Fullerene Sci. Technol., 2001, 9(1):17~23. 

    20. [20]

      T Furuishi, Y Ohmachi, T Fukami et al. J. Inclu. Phenom. Macrocycl. Chem., 2010, 67(1~2):233~239. 

    21. [21]

      Y Zhang, W Liu, X Gao et al. Tetrahed. Lett., 2006, 47(48):8571~8574. 

    22. [22]

      D Wang, L Sun, W Liu et al. Environ. Sci. Technol., 2009, 43(15):5825~5829. 

    23. [23]

      S Mieda, A Ikeda, Y Shigeri et al. J. Phys. Chem. C, 2014, 118(23):12555~12561. 

    24. [24]

      M M Ali, K Y Sandhya. Carbon, 2014, 70(4):249~257. 

    25. [25]

      A Nagai, S Tsutsumi, W Michida et al. J. Chem. Eng. JPN, 2018, 51(7):615~619. 

    26. [26]

      T Gangadhar, V I Bhoi, S Kumar et al. J. Inclu. Phenom. Macroeyel. Chem., 2014, 79(1~2):215~223. 

    27. [27]

      M Eskandari, A Najdian, R Soleyman. Chem. Phys., 2016, 472(15):9~17. 

    28. [28]

      H M Wang, G Wenz. Beilstein J. Org. Chem., 2012, 8:1644~1651. 

    29. [29]

      A Altaf, H Aldawsari, Z M Banjar et al. Int. J. Photoenergy, 2014, 570506.

    30. [30]

      K Nobusawa, D Payra, M Naito. Chem. Commun., 2014, 50(61):8339~8342. 

    31. [31]

      M Fathalla, S C Li, U Diebold et al. Chem. Commun., 2009, 28(28):4209~4211. 

    32. [32]

      W Zhang, X D Gong, C Liu et al. J. Mater. Chem. B, 2014, 2(31):5107~5115. 

    33. [33]

      J F R van Guyse, V R de la Rosa, R Hoogenboom. Chem. Eur. J., 2018, 24(11):2758~2766. 

    34. [34]

       

    35. [35]

      A Ikeda, T Iizuka, N Maekubo et al. ACS Med. Chem. Lett., 2013, 4(8):752~756. 

    36. [36]

      S Duri, A L Harkins, A J Frazier et al. ACS Sustain. Chem. Eng., 2017, 5(6):2168~0485. 

    37. [37]

      A Ikeda, T Genmoto, N Maekubo et al. Chem. Lett., 2010, 39(12):1256~1257. 

    38. [38]

      J Motoyanagi, A Kurata, M Minoda. Langmuir, 2015, 31(8):2256~2261. 

    39. [39]

      J Ma, C Yang, S Zhu et al. New J. Chem., 2018, 42:9801~9807. 

    40. [40]

      Y Liu, Y Z Pu, L Sun et al. J. Biomed. Nanotechnol., 2016, 12(7):1393~1403. 

    41. [41]

      Z Guan, Y Wang, Y Chen et al. Tetrahedron, 2009, 65(6):1125~1129. 

    42. [42]

      J Wang, Z Zhang, W Wu et al. Chin. J. Chem., 2014, 32(1):78~84. 

    43. [43]

      F Giacalone, F D'anna, R Giacalone et al. Tetrahed. Lett., 2010, 38(2):8105~8108. 

    44. [44]

      L Pospíšil, M Hromadová, M Gál et al. Carbon, 2010, 48(1):153~162. 

    45. [45]

      S L Xiao, Q Wang, F Yu et al. Bioorg. Med. Chem., 2012, 20(18):5616~5622. 

    46. [46]

      J J Wang, Z H Zhang, W Wu et al. Chin. J. Chem., 2014, 32(1):78~84. 

    47. [47]

      H Y Guo, X T Fang, F F Yang et al. J. Inclu. Phenom. Macroeycl. Chem., 2016, 84(1~2):79~86. 

    48. [48]

      S P Cornes, S Zhou, K Porfyrakis. Chem. Commun., 2017, 53(95):12742~12745. 

    49. [49]

      X L Zhu, A Quaranta, R V Bensasson et al. Chem. Eur. J., 2017, 23(40):9462~9466. 

    50. [50]

      Y M Zhang, Y Chen, Y Yang et al. Chem. Eur. J., 2009, 15(42):11333~11340. 

  • 加载中
    1. [1]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    2. [2]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    3. [3]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    4. [4]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    5. [5]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    6. [6]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    7. [7]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    8. [8]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    9. [9]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    13. [13]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    16. [16]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    17. [17]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    18. [18]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    19. [19]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    20. [20]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

Metrics
  • PDF Downloads(24)
  • Abstract views(2078)
  • HTML views(275)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return