Citation: Chen Ning, Wang Yuxiao, Lei Chenghui, Liu Yang, Li Yang, Wang Lijun, Li Fushen. Identifying the Material Gene of Lithium Ion Diffusion Activation Energy by MGI Method[J]. Chemistry, ;2020, 83(1): 50-57. shu

Identifying the Material Gene of Lithium Ion Diffusion Activation Energy by MGI Method

  • Received Date: 9 June 2019
    Accepted Date: 8 October 2019

Figures(7)

  • The application of lithium-ion batteries involves key materials such as cathode and anode, electrolytes. The diffusion of lithium ions in materials is the core microscopic process. Through experimental measurements and theoretical calculations, we can find excellent materials with low lithium-ion diffusion activation energy, but with a good activation energy parameter, we cannot clarify what the influencing factors are, nor can we optimize existing materials and discover new lithium batteries material. In this paper, using MGI research ideas, using the first-principles calculation of the activation energy parameters of more than 40 typical systems, combined with the calculation results of the energy band structure characteristics, and through data analysis, we have identified the influence of lithium-ion diffusion in the lattice structure. The role of activation energy influenced by gene parameters such as valence band width and d orbital proportion in valence band was determined. These results reflect the necessity of the study of the overall characteristics of the lithium ion material band, and also reflect the advantages and characteristics of the MGI research method.
  • 加载中
    1. [1]

       

    2. [2]

       

    3. [3]

       

    4. [4]

       

    5. [5]

      Wang Y, Su F, Lee J Y, et al. Chem. Mater., 2006, 18(5):1347~1353. 

    6. [6]

       

    7. [7]

      Zhu X H, Ning C, Fang L, et al. Chin. Sci. Bull., 2011, 56(30):3229~3232. 

    8. [8]

      Ying S M, Dompablo A D. Energy Environ. Sci., 2009, 2(6):589~609. 

    9. [9]

      Adams S, Rao R P. J. Mater. Chem., 2012, 22(4):1426~1434. 

    10. [10]

      Adams S, Rao R P. J. Mater. Chem., 2012, 22(16):7687~7691. 

    11. [11]

      Thangadurai V, Adams S, Weppner W. Chem. Mater., 2004, 16(16):2998~3006. 

    12. [12]

      Adams S, Swenson J. Solid State Ionics, 2002, 154:151~159. 

    13. [13]

      Adams S. J. Power Sources, 2006, 159(1):200~204. 

    14. [14]

      Xiao R, Hong L, Chen L. J. Materiomics, 2015, 1(4):325~332. 

    15. [15]

      Xiao R, Li H, Chen L. Sci. Rep., 2015, 5:14227. 

    16. [16]

      Zhu J, Lu L, Zeng K. ACS Nano, 2013, 7(2):1666~1675. 

    17. [17]

      Yang S, Yan B, Wu J, et al. ACS Appl. Mater. Interf., 2017, 9(16):13999~14005. 

    18. [18]

      Zeier W G, Zhou S, Lopez-Bermudez B, et al.ACS Appl. Mater. Interf., 2014, 6(14):10900~10907. 

    19. [19]

      Liao L, Zuo P, Ma Y, et al. Electrochim. Acta, 2012, 60:269~273. 

    20. [20]

      Kang K, Ceder G. Phys. Rev. B, 2006, 74(9):094105. 

    21. [21]

      Lei F, Wei S, Li S, et al. Adv. Energy Mater., 2018, 8(11):1702657. 

    22. [22]

      Asano T, Sakai A, Ouchi S, et al. Adv. Mater., 2018, 30(44):1803075. 

    23. [23]

      Dai J, Yang C, Wang C, et al. Adv. Mater., 2018, 30(48):1802068. 

    24. [24]

      Kraft M A, Ohno S, Zinkevich T, et al. J. Am. Chem. Soc., 2018, 140(47):16330~16339. 

    25. [25]

      http://www.paulingfile.com/

    26. [26]

      Nosengo N. Nature, 2016, 533(7601):22~25. 

    27. [27]

      Raccuglia P, Elbert K C, Adler P D F, et al. Nature, 2016, 533(7601):73. 

    28. [28]

       

    29. [29]

      Jain A, Ong S P, Hautier G, et al. Apl Mater., 2013, 1(1):011002. 

    30. [30]

      Ceder G. MRS Bull., 2010, 35(9):693~701. 

    31. [31]

      https://www.mgedata.cn/

    32. [32]

      Clark S J, Segall M D, Pickard C J, et al. Z. Krist-Cryst Mater., 2005, 220(5/6):567~570. 

    33. [33]

      Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett., 1996, 77(18):3865~3868. 

    34. [34]

      Zhao B, Chen N. Physica C, 2016, 523:1~4. 

    35. [35]

      Xiao R, Li H, Chen L. Sci. Rep., 2015, 5:14227. 

    36. [36]

      Kutteh R, Avdeev M. J. Phys. Chem. C, 2014, 118(21):11203~11214. 

    37. [37]

      Jalem R, Nakayama M, Kasuga T. J. Mater. Chem. A, 2014, 2(3):720~734. 

    38. [38]

      Nakayama M, Kaneko M, Wakihara M. Phys. Chem. Chem. Phys., 2012, 14(40):13963~13970. 

    39. [39]

      Nakayama M, Jalem R, Kasuga T. Solid State Ionics, 2014, 262:74~76. 

    40. [40]

      Bhattacharya J, van der Ven A. Phys. Rev. B, 2010, 81(10):104304. 

    41. [41]

      Ziebarth B, Klinsmann M, Eckl T, et al. Phys. Rev. B, 2014, 89(17):174301. 

    42. [42]

      van der Ven A, Ceder G, Asta M, et al. Phys. Rev. B, 2001, 64(18):184307. 

    43. [43]

      Lyu Y, Ben L, Sun Y, et al. J. Power Sources, 2015, 273:1218~1225. 

    44. [44]

      Xiao R, Li H, Chen L. Chem. Mater., 2012, 24(21):4242~4251. 

    45. [45]

      Chen Y, Huo M, Song L, et al. RSC Adv., 2014, 4(80):42462~42466. 

    46. [46]

      Van Der Ven A, Thomas J C, Xu Q, et al. Phys. Rev. B, 2008, 78(10):104306. 

    47. [47]

      Eames C, Clark J M, Rousse G, et al. Chem. Mater., 2014, 26(12):3672~3678. 

    48. [48]

      Seo D H, Park Y U, Kim S W, et al. Phys. Rev. B, 2011, 83(20):205127. 

    49. [49]

      Islam M M, Bredow T, Heitjans P. J. Phys. Chem. C, 2011, 115(25):12343~12349. 

    50. [50]

      Shi S, Qi Y, Li H, et al. J. Phys. Chem. C, 2013, 117(17):8579~8593. 

    51. [51]

      Zhang Y, Zhao Y, Chen C. Phys. Rev. B, 2013, 87(13):134303. 

    52. [52]

      Du Y A, Holzwarth N. Phys. Rev. B, 2007, 76(17):174302. 

    53. [53]

      Lepley N, Holzwarth N, Du Y A. Phys. Rev. B, 2013, 88(10):104103. 

    54. [54]

      Xiong K, Longo R, Santosh K, et al. Comput. Mater. Sci., 2014, 90:44~49. 

    55. [55]

      Clark J M, Eames C, Reynaud M, et al. J. Mater. Chem. A, 2014, 2(20):7446~7453. 

    56. [56]

      Jalem R, Nakayama M, Kasuga T. Solid State Ionics, 2014, 262:589~592. 

    57. [57]

      Tripathi R, Gardiner G R, Islam M S, et al. Chem. Mater., 2011, 23(8):2278~2284. 

    58. [58]

      Kang K, Morgan D, Ceder G. Phys. Rev. B, 2009, 79(1):014305. 

    59. [59]

      Islam M M, Bredow T, Minot C. J. Phys. Chem. B, 2006, 110(19):9413~9420. 

    60. [60]

      Chen Y, Ouyang C, Song L, et al. J. Phys. Chem. C, 2011, 115(14):7044~7049. 

    61. [61]

      Goodenough J B. Phys. Rev., 1955, 100(2):564. 

  • 加载中
    1. [1]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    2. [2]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    3. [3]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    4. [4]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    5. [5]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    6. [6]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    7. [7]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    8. [8]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    10. [10]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    11. [11]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

    12. [12]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    13. [13]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    14. [14]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    15. [15]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    16. [16]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    17. [17]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    18. [18]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    19. [19]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    20. [20]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

Metrics
  • PDF Downloads(11)
  • Abstract views(1773)
  • HTML views(488)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return