Citation:
Chen Ning, Wang Yuxiao, Lei Chenghui, Liu Yang, Li Yang, Wang Lijun, Li Fushen. Identifying the Material Gene of Lithium Ion Diffusion Activation Energy by MGI Method[J]. Chemistry,
;2020, 83(1): 50-57.
-
The application of lithium-ion batteries involves key materials such as cathode and anode, electrolytes. The diffusion of lithium ions in materials is the core microscopic process. Through experimental measurements and theoretical calculations, we can find excellent materials with low lithium-ion diffusion activation energy, but with a good activation energy parameter, we cannot clarify what the influencing factors are, nor can we optimize existing materials and discover new lithium batteries material. In this paper, using MGI research ideas, using the first-principles calculation of the activation energy parameters of more than 40 typical systems, combined with the calculation results of the energy band structure characteristics, and through data analysis, we have identified the influence of lithium-ion diffusion in the lattice structure. The role of activation energy influenced by gene parameters such as valence band width and d orbital proportion in valence band was determined. These results reflect the necessity of the study of the overall characteristics of the lithium ion material band, and also reflect the advantages and characteristics of the MGI research method.
-
-
- [1]
- [2]
- [3]
- [4]
-
[5]
Wang Y, Su F, Lee J Y, et al. Chem. Mater., 2006, 18(5):1347~1353.
- [6]
-
[7]
Zhu X H, Ning C, Fang L, et al. Chin. Sci. Bull., 2011, 56(30):3229~3232.
-
[8]
Ying S M, Dompablo A D. Energy Environ. Sci., 2009, 2(6):589~609.
- [9]
- [10]
-
[11]
Thangadurai V, Adams S, Weppner W. Chem. Mater., 2004, 16(16):2998~3006.
- [12]
- [13]
- [14]
- [15]
- [16]
-
[17]
Yang S, Yan B, Wu J, et al. ACS Appl. Mater. Interf., 2017, 9(16):13999~14005.
-
[18]
Zeier W G, Zhou S, Lopez-Bermudez B, et al.ACS Appl. Mater. Interf., 2014, 6(14):10900~10907.
-
[19]
Liao L, Zuo P, Ma Y, et al. Electrochim. Acta, 2012, 60:269~273.
- [20]
-
[21]
Lei F, Wei S, Li S, et al. Adv. Energy Mater., 2018, 8(11):1702657.
-
[22]
Asano T, Sakai A, Ouchi S, et al. Adv. Mater., 2018, 30(44):1803075.
-
[23]
Dai J, Yang C, Wang C, et al. Adv. Mater., 2018, 30(48):1802068.
-
[24]
Kraft M A, Ohno S, Zinkevich T, et al. J. Am. Chem. Soc., 2018, 140(47):16330~16339.
-
[25]
http://www.paulingfile.com/
- [26]
-
[27]
Raccuglia P, Elbert K C, Adler P D F, et al. Nature, 2016, 533(7601):73.
- [28]
-
[29]
Jain A, Ong S P, Hautier G, et al. Apl Mater., 2013, 1(1):011002.
- [30]
-
[31]
https://www.mgedata.cn/
-
[32]
Clark S J, Segall M D, Pickard C J, et al. Z. Krist-Cryst Mater., 2005, 220(5/6):567~570.
-
[33]
Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett., 1996, 77(18):3865~3868.
- [34]
- [35]
-
[36]
Kutteh R, Avdeev M. J. Phys. Chem. C, 2014, 118(21):11203~11214.
-
[37]
Jalem R, Nakayama M, Kasuga T. J. Mater. Chem. A, 2014, 2(3):720~734.
-
[38]
Nakayama M, Kaneko M, Wakihara M. Phys. Chem. Chem. Phys., 2012, 14(40):13963~13970.
-
[39]
Nakayama M, Jalem R, Kasuga T. Solid State Ionics, 2014, 262:74~76.
-
[40]
Bhattacharya J, van der Ven A. Phys. Rev. B, 2010, 81(10):104304.
-
[41]
Ziebarth B, Klinsmann M, Eckl T, et al. Phys. Rev. B, 2014, 89(17):174301.
-
[42]
van der Ven A, Ceder G, Asta M, et al. Phys. Rev. B, 2001, 64(18):184307.
-
[43]
Lyu Y, Ben L, Sun Y, et al. J. Power Sources, 2015, 273:1218~1225.
- [44]
-
[45]
Chen Y, Huo M, Song L, et al. RSC Adv., 2014, 4(80):42462~42466.
-
[46]
Van Der Ven A, Thomas J C, Xu Q, et al. Phys. Rev. B, 2008, 78(10):104306.
-
[47]
Eames C, Clark J M, Rousse G, et al. Chem. Mater., 2014, 26(12):3672~3678.
-
[48]
Seo D H, Park Y U, Kim S W, et al. Phys. Rev. B, 2011, 83(20):205127.
-
[49]
Islam M M, Bredow T, Heitjans P. J. Phys. Chem. C, 2011, 115(25):12343~12349.
-
[50]
Shi S, Qi Y, Li H, et al. J. Phys. Chem. C, 2013, 117(17):8579~8593.
- [51]
- [52]
-
[53]
Lepley N, Holzwarth N, Du Y A. Phys. Rev. B, 2013, 88(10):104103.
-
[54]
Xiong K, Longo R, Santosh K, et al. Comput. Mater. Sci., 2014, 90:44~49.
-
[55]
Clark J M, Eames C, Reynaud M, et al. J. Mater. Chem. A, 2014, 2(20):7446~7453.
-
[56]
Jalem R, Nakayama M, Kasuga T. Solid State Ionics, 2014, 262:589~592.
-
[57]
Tripathi R, Gardiner G R, Islam M S, et al. Chem. Mater., 2011, 23(8):2278~2284.
-
[58]
Kang K, Morgan D, Ceder G. Phys. Rev. B, 2009, 79(1):014305.
-
[59]
Islam M M, Bredow T, Minot C. J. Phys. Chem. B, 2006, 110(19):9413~9420.
-
[60]
Chen Y, Ouyang C, Song L, et al. J. Phys. Chem. C, 2011, 115(14):7044~7049.
- [61]
-
-
-
[1]
Da Wang , Xiaobin Yin , Jianfang Wu , Yaqiao Luo , Siqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029
-
[2]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007
-
[3]
Liangliang Song , Haoyan Liang , Shunqing Li , Bao Qiu , Zhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085
-
[4]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[5]
Xintong Zhu , Bin Cao , Chong Yan , Cheng Tang , Aibing Chen , Qiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096
-
[6]
Jingshuo Zhang , Yue Zhai , Ziyun Zhao , Jiaxing He , Wei Wei , Jing Xiao , Shichao Wu , Quan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006
-
[7]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028
-
[8]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030
-
[9]
Ying Li , Yushen Zhao , Kai Chen , Xu Liu , Tingfeng Yi , Li-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007
-
[10]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[11]
Chenyue Huang , Hongfei Zheng , Ning Qin , Canpei Wang , Liguang Wang , Jun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051
-
[12]
Zhi Dou , Huiyu Duan , Yixi Lin , Yinghui Xia , Mingbo Zheng , Zhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039
-
[13]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[14]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[15]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[16]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[17]
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
-
[18]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005
-
[19]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019
-
[20]
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
-
[1]
Metrics
- PDF Downloads(11)
- Abstract views(1774)
- HTML views(488)