Citation: Liu Yanjun, Tang Xiaorong, Hu Kun. Study on Flow Characteristics of Natural Gas Hydrate Slurry with Decomposition in Vertical Tube[J]. Chemistry, ;2018, 81(3): 267-273. shu

Study on Flow Characteristics of Natural Gas Hydrate Slurry with Decomposition in Vertical Tube

  • Corresponding author: Liu Yanjun, liuyanjun2016@sina.cn
  • Received Date: 18 July 2017
    Accepted Date: 18 December 2017

Figures(11)

  • The Euler multiphase flow model and the Finite-Rate/Eddy-Dissipation model were used to study the flow characteristics of solid-liquid two-phase flow and the gas-liquid-solid flow in the vertical pipeline. The results showed that the velocity distribution and the volume distribution of hydrate both exhibit a fluctuation-uniform-fluctuation law with the change of height effected by gas from decomposition of hydrate slurry. Besides, it was found that the gas producing from hydrate dissociation on the slurry transportation has a drag reduction effect, and it can be proposed that natural gas hydrate three-phase flow slurry flow rate should not be less than 3.0 m/s. Finally, the relationship between the loss of the hydraulic lift and the flow rate of the hydrate slurry was fitted through the analysis of the resistance characteristics of the pipeline, which will provide guidance on the economic upgrading of gas hydrate slurry pipelines.
  • 加载中
    1. [1]

       

    2. [2]

    3. [3]

      W Song, R Xiao, Z Feng. HVAC&R Res., 2012, 18(3):461~467.

    4. [4]

      A C S Monteiro, P K Bansal. Int. J. Refrig., 2010, 33(8):1523~1532. 

    5. [5]

       

    6. [6]

      P Clain, A Delahaye, L Fournaison et al. Chem. Eng. J., 2012, 193-194(12):112~122.

    7. [7]

    8. [8]

      Z W Ma, P Zhang. Int. J. Refrig., 2012, 35(4):992~1002. 

    9. [9]

       

    10. [10]

       

    11. [11]

    12. [12]

      M Clarke, P R Bishnoi. Can. J. Chem. Eng., 2010, 79(1):143~147.

    13. [13]

      H C Kim, P R Bishnoi, R A Heidemann et al. Chem. Eng. Sci., 1987, 42(7):1645~1653. 

    14. [14]

      C H Yoon, D K Lee, Y C Park et al. Design and Test of Hydraulic Pumping System with 30 m Height Scale//The Fourteenth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 2004.

    15. [15]

      M Dai, K Wu. Math. Probl. Eng., 2016, 2016(5):1~7.

    16. [16]

      H C Kim, P R Bishnoi, R A Heidemann et al. Chem. Eng. Sci., 1987, 42(7):1645~1653. 

    17. [17]

      O Sari, D Vuarnoz, F Meili et al. Visualization of Ice Slurries and Ice Slurry Flows//The Workshop on Ice Slurries of the Iir. International Institute of Refrigeration ⅡR-ⅡF, 2000.

    18. [18]

      A Kitanovski, D Vuarnoz, D Ata-Caesar et al. Int. J. Refrig., 2005, 28(1):37~50. 

  • 加载中
    1. [1]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    2. [2]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    3. [3]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    4. [4]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    5. [5]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    9. [9]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    10. [10]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    11. [11]

      Zhao LuHu LvQinzhuang LiuZhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-0. doi: 10.3866/PKU.WHXB202405005

    12. [12]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    13. [13]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    14. [14]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    15. [15]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    16. [16]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    17. [17]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    18. [18]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    19. [19]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    20. [20]

      Xintian Xie Sicong Ma Yefei Li Cheng Shang Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164

Metrics
  • PDF Downloads(3)
  • Abstract views(1159)
  • HTML views(534)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return