Citation:
Ma Jianwei, Ren Shupeng, Song Yarui, Wang Dongsheng, Men Bin, Zhao Haiqian. Advances in the Application of Zero-Valent Iron Technology in the Field of Wastewater Treatment[J]. Chemistry,
;2019, 82(1): 3-11.
-
Zero-valent iron (ZVI) technology has been widely used in wastewater treatment due to its high efficiency and economy. The recent research on ZVI was divided into two major directions:one is to explore the modification of ZVI, including its particle size, internal structure change, and the combination of ZVI and other metals; the other is to study the mechanism of ZVI removing different contaminants, including the reducibility of ZVI, adsorption precipitation of the FeOOH, ZVI promoted Fenton reaction, etc. This paper firstly summarized the recent advances of ZVI-based water treatment methods including sponge iron, nZVI, doping of ZVI with other metals (micro-electrolysis method), combination of ZVI with Fenton-based oxidation. Then, the reaction mechanism of the above methods for removing heavy metals, arsenic, nitrates, dyes and phenol was discussed, and it was pointed out that ZVI materials have appreciable removal efficiency for several types of pollutants. Finally, the future perspectives regarding the application of ZVI in treating wastewater was proposed.
-
Keywords:
- Zero-valent iron,
- Wastewater,
- Degradation,
- Adsorption
-
-
- [1]
- [2]
-
[3]
- [4]
- [5]
-
[6]
S Rodrigue, L Vasquez, A Romero et al. Ind. Eng. Chem. Res., 2014, 53(31):12288~12294.
-
[7]
X Guo, Z Yang, H Liu et al. Sep. Purif. Technol., 2015, 146:227~234.
- [8]
-
[9]
L F Greenlee, J D Torrey, R L Amaro et al. Environ. Sci. Technol., 2012, 46(23):12913~12920.
- [10]
- [11]
-
[12]
M Arshadi, M K Abdolmaleki, F Mousavinia et al. J. Colloid. Interf. Sci., 2017, 486:296~308.
-
[13]
I Hussain, M Li, Y Zhang et al. Chem. Eng. J., 2017, 311:163~172.
-
[14]
C Nopphorn, S Sudipta et al. Chem. Eng. J., 2018, 331:545~555.
-
[15]
F Zhu, L Li, W Ren et al. Environ. Pollut., 2017, 227:444~450.
-
[16]
A M E Khalil, O Eljamal, T W M Amen et al. Chem. Eng. J., 2016, 309:349~365.
- [17]
-
[18]
C Jiang, L Jia, Y He et al. J. Colloid. Interf. Sci., 2013, 402(14):246~252..
-
[19]
Z Xiong, B Lai, P Yang et al. J. Hazard. Mater., 2015, 297:261~268.
-
[20]
T Shubair, O Eljamal, A M E Khalil et al. Sep. Purif. Technol., 2017, 193:242~254.
-
[21]
X Nie, J Liu, X Zeng. Proc. Environ. Sci., 2012, 16(16):320~326.
-
[22]
Z Yang, C Shan, Y C Mei et al. Chem. Eng. J., 2018, 334:2255~2263.
-
[23]
L Santos-Juanes, F S G Einschlag, A M Amat et al. Chem. Eng. J., 2016, 310:484~490.
-
[24]
I H Yoon, G Yoo, H J Hong et al. Chemosphere, 2016, 145:409~415.
-
[25]
Y Li, X Guo, H Dong et al. Chem. Eng. J., 2018, 345:432~440.
- [26]
-
[27]
A M Azzam, S T El-wakeel, B B Mostafa et al. J. Environ. Chem. Eng., 2016, 4(2):2196~2206.
-
[28]
Z Ren, D Kong, K Wang et al. J. Mater. Chem. A, 2014, 2(42):17952~17961.
-
[29]
P Müller, K E Lorber, R Mischitz et al. Sci. Total. Environ., 2014, 485:748~754.
-
[30]
N M Zhu, Y S Xu, L C Dai et al. J. Hazard. Mater., 2018, 351:138~146.
-
[31]
X Li, Y Wu, C C Zhangi et al. Chem. Eng. J., 2016, 306:393~400.
-
[32]
P Ayala-Parra, R Sierra-Alvarez et al. J. Hazard. Mater., 2016, 306:393~400.
-
[33]
O Celebi, C Uzum, T Shahwan et al. J. Hazard. Mater., 2007, 148(3):761~765.
-
[34]
N Kishimoto, Y Narazaki, K Takemoto. Sep. Purif. Technol., 2017, 193:168~173.
-
[35]
M M Eglal, A S Ramaurthy. Environ. Res. Lett., 2015, 50(9):901~912.
-
[36]
G Tang, Y H Huang, H Zeng et al. Chem. Eng. J., 2014, 244(10):97~104.
- [37]
-
[38]
M Biterna, L Antonoglou, E Lazou et al. J. Hazard. Mater., 2007, 149(3):548~556.
-
[39]
A Katsoyiannis, A Voegelin, A I Zouboulis et al. J. Hazard. Mater., 2015, 297:1~7.
-
[40]
V T Luong, E E C Kurz. Water. Res., 2018, 3:105~109.
-
[41]
Y Yoon, W K Park, T M Hwang et al. J. Hazard. Mater., 2016, 304:196~199.
-
[42]
S Suthersan, J Horst, M Schnobrich et al. Rem. Eng., 2017, 307:22~27.
-
[43]
L S Yadav, B K Mishra, A Kumar et al. J. Environ. Chem. Eng., 2014, 2:1467~1473.
-
[44]
B Casentini, F T Falcione, S Amalfitano et al. Water. Res., 2016, 206:135~145.
-
[45]
J M Calo, L Madhavan, J Kirchner, E J Bain. Chem. Eng. J., 2012, 189:237~243.
-
[46]
M Ramos, W Yane, X Li et al. J. Phys. Chem. C, 2009, 113:14591~14594.
-
[47]
W Yan, R Vasic, A Frenkel et al. Environr. Sci. Technol., 2012, 46:7018~7026.
-
[48]
X Jiang, D Ying, D Ye et al. Bioresour. Technol., 2017, 252:134~142.
- [49]
-
[50]
J Tamahrajah, I Goncharova, I Pytskii et al. Appl. Clay Sci., 2017, 143:134~141.
-
[51]
M Kalaruban, P Loganathan, J Kandasamy et al. Sep. Purif. Technol., 2017, 189:260~266.
- [52]
-
[53]
X Guo, Z Yang, H Liu et al. Sep. Purif. Technol., 2015, 146:227~234.
-
[54]
Y Zhang, G B Douglas, L Pu et al. Sci. Total. Environ., 2017, 598:1140~1150.
-
[55]
H H Wang, D G Kim, H S Shin et al. J. Hazard. Mater., 2011, 185:1513~1521.
-
[56]
S M Hosseini, T Tosco. J. Contam. Hydrol., 2015, 179:182~195.
-
[57]
S Ryu, S W Jeong, A Jang et al. Appl. Catal.B, 2011, 105(1/2):128~135.
-
[58]
T Shubair, O Eljamal, A M E Khalil et al. Sep. Purif. Technol., 2018, 193:242~254.
-
[59]
C N Reddy, A N Kumar, S V Mohan. J. Hazard. Mater., 2017, 343:49~58.
-
[60]
A Khan, S M Prabhu, J Park et al. J. Ind. Eng. Chem., 2016, 47:86~93.
-
[61]
R Yamaguchi, S Kurosu, M Suzuki et al. Chem. Eng. J., 2018, 334:1537~1549.
-
[62]
X Man, X A Ning, H Zou et al. Chemosphere, 2017, 191:839~847.
-
[63]
M Cai, J Su, G Lian et al. Ultrason. Sonochem., 2016, 31:193~200.
-
[64]
W W Li, Y Zhang, J B Zhao et al. Bioresource. Technol., 2013, 149:38~43.
-
[65]
Y B Zhang, Y W Liu, Y W Jing et al. J. Environ. Sci., 2012, 24:720~727.
-
[66]
J Park, J H Yoon, S Depuydt et al. Ecotox. Environ. Safe., 2016, 126:147~153.
-
[67]
S A Messele, O S G P Soares, J J M Órfão et al. Catal. Today, 2015, 240:73~79.
-
[68]
R C Martins, L R Henriques, R M Quinta-Ferreira. Chem. Eng. J., 2013, 100:225~233.
-
[69]
J Singh, J K Yang, Y Y Hang. J. Environ. Manage., 2016, 175:60~66.
-
-
-
[1]
Xinxin YU , Yongxing LIU , Xiaohong YI , Miao CHANG , Fei WANG , Peng WANG , Chongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438
-
[2]
Jing Wang , Pingping Li , Yuehui Wang , Yifan Xiu , Bingqian Zhang , Shuwen Wang , Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097
-
[3]
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
-
[4]
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039
-
[5]
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
-
[6]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[7]
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
-
[8]
Fugui XI , Du LI , Zhourui YAN , Hui WANG , Junyu XIANG , Zhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291
-
[9]
Wei Li , Jinfan Xu , Yongjun Zhang , Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013
-
[10]
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
-
[11]
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
-
[12]
Qianqian Zhong , Yucui Hao , Guotao Yu , Lijuan Zhao , Jingfu Wang , Jian Liu , Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013
-
[13]
Shuhong Xiang , Lv Yang , Yingsheng Xu , Guoxin Cao , Hongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097
-
[14]
Ping Ye , Lingshuang Qin , Mengyao He , Fangfang Wu , Zengye Chen , Mingxing Liang , Libo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-0. doi: 10.3866/PKU.WHXB202311032
-
[15]
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482
-
[16]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[17]
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081
-
[18]
Simin Fang , Wei Huang , Guanghua Yu , Cong Wei , Mingli Gao , Guangshui Li , Hongjun Tian , Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023
-
[19]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[20]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[1]
Metrics
- PDF Downloads(22)
- Abstract views(1267)
- HTML views(445)