Citation: Ma Jianwei, Ren Shupeng, Song Yarui, Wang Dongsheng, Men Bin, Zhao Haiqian. Advances in the Application of Zero-Valent Iron Technology in the Field of Wastewater Treatment[J]. Chemistry, ;2019, 82(1): 3-11. shu

Advances in the Application of Zero-Valent Iron Technology in the Field of Wastewater Treatment

  • Received Date: 18 June 2018
    Accepted Date: 2 September 2018

Figures(3)

  • Zero-valent iron (ZVI) technology has been widely used in wastewater treatment due to its high efficiency and economy. The recent research on ZVI was divided into two major directions:one is to explore the modification of ZVI, including its particle size, internal structure change, and the combination of ZVI and other metals; the other is to study the mechanism of ZVI removing different contaminants, including the reducibility of ZVI, adsorption precipitation of the FeOOH, ZVI promoted Fenton reaction, etc. This paper firstly summarized the recent advances of ZVI-based water treatment methods including sponge iron, nZVI, doping of ZVI with other metals (micro-electrolysis method), combination of ZVI with Fenton-based oxidation. Then, the reaction mechanism of the above methods for removing heavy metals, arsenic, nitrates, dyes and phenol was discussed, and it was pointed out that ZVI materials have appreciable removal efficiency for several types of pollutants. Finally, the future perspectives regarding the application of ZVI in treating wastewater was proposed.
  • 加载中
    1. [1]

       

    2. [2]

       

    3. [3]

    4. [4]

       

    5. [5]

       

    6. [6]

      S Rodrigue, L Vasquez, A Romero et al. Ind. Eng. Chem. Res., 2014, 53(31):12288~12294. 

    7. [7]

      X Guo, Z Yang, H Liu et al. Sep. Purif. Technol., 2015, 146:227~234. 

    8. [8]

       

    9. [9]

      L F Greenlee, J D Torrey, R L Amaro et al. Environ. Sci. Technol., 2012, 46(23):12913~12920. 

    10. [10]

      F Zhu, L Li, S Ma et al. Chem. Eng. J., 2016, 302:663~669. 

    11. [11]

      J Liu, A Liu, W X Zhang. Chem. Eng. J., 2016, 303:268~274. 

    12. [12]

      M Arshadi, M K Abdolmaleki, F Mousavinia et al. J. Colloid. Interf. Sci., 2017, 486:296~308. 

    13. [13]

      I Hussain, M Li, Y Zhang et al. Chem. Eng. J., 2017, 311:163~172. 

    14. [14]

      C Nopphorn, S Sudipta et al. Chem. Eng. J., 2018, 331:545~555. 

    15. [15]

      F Zhu, L Li, W Ren et al. Environ. Pollut., 2017, 227:444~450. 

    16. [16]

      A M E Khalil, O Eljamal, T W M Amen et al. Chem. Eng. J., 2016, 309:349~365.

    17. [17]

      J Li, Y Li. J Environ. Sci-China, 2011, 23:60~64. 

    18. [18]

      C Jiang, L Jia, Y He et al. J. Colloid. Interf. Sci., 2013, 402(14):246~252..

    19. [19]

      Z Xiong, B Lai, P Yang et al. J. Hazard. Mater., 2015, 297:261~268. 

    20. [20]

      T Shubair, O Eljamal, A M E Khalil et al. Sep. Purif. Technol., 2017, 193:242~254.

    21. [21]

      X Nie, J Liu, X Zeng. Proc. Environ. Sci., 2012, 16(16):320~326.

    22. [22]

      Z Yang, C Shan, Y C Mei et al. Chem. Eng. J., 2018, 334:2255~2263. 

    23. [23]

      L Santos-Juanes, F S G Einschlag, A M Amat et al. Chem. Eng. J., 2016, 310:484~490.

    24. [24]

      I H Yoon, G Yoo, H J Hong et al. Chemosphere, 2016, 145:409~415. 

    25. [25]

      Y Li, X Guo, H Dong et al. Chem. Eng. J., 2018, 345:432~440. 

    26. [26]

      X Guo, Y Zhe, H Dong et al. Water. Res., 2016, 88:671~680. 

    27. [27]

      A M Azzam, S T El-wakeel, B B Mostafa et al. J. Environ. Chem. Eng., 2016, 4(2):2196~2206. 

    28. [28]

      Z Ren, D Kong, K Wang et al. J. Mater. Chem. A, 2014, 2(42):17952~17961. 

    29. [29]

      P Müller, K E Lorber, R Mischitz et al. Sci. Total. Environ., 2014, 485:748~754.

    30. [30]

      N M Zhu, Y S Xu, L C Dai et al. J. Hazard. Mater., 2018, 351:138~146. 

    31. [31]

      X Li, Y Wu, C C Zhangi et al. Chem. Eng. J., 2016, 306:393~400. 

    32. [32]

      P Ayala-Parra, R Sierra-Alvarez et al. J. Hazard. Mater., 2016, 306:393~400.

    33. [33]

      O Celebi, C Uzum, T Shahwan et al. J. Hazard. Mater., 2007, 148(3):761~765. 

    34. [34]

      N Kishimoto, Y Narazaki, K Takemoto. Sep. Purif. Technol., 2017, 193:168~173.

    35. [35]

      M M Eglal, A S Ramaurthy. Environ. Res. Lett., 2015, 50(9):901~912.

    36. [36]

      G Tang, Y H Huang, H Zeng et al. Chem. Eng. J., 2014, 244(10):97~104.

    37. [37]

      J Guo, C Cheng. Chemosphere, 2017, 181:759~763. 

    38. [38]

      M Biterna, L Antonoglou, E Lazou et al. J. Hazard. Mater., 2007, 149(3):548~556. 

    39. [39]

      A Katsoyiannis, A Voegelin, A I Zouboulis et al. J. Hazard. Mater., 2015, 297:1~7. 

    40. [40]

      V T Luong, E E C Kurz. Water. Res., 2018, 3:105~109.

    41. [41]

      Y Yoon, W K Park, T M Hwang et al. J. Hazard. Mater., 2016, 304:196~199. 

    42. [42]

      S Suthersan, J Horst, M Schnobrich et al. Rem. Eng., 2017, 307:22~27.

    43. [43]

      L S Yadav, B K Mishra, A Kumar et al. J. Environ. Chem. Eng., 2014, 2:1467~1473. 

    44. [44]

      B Casentini, F T Falcione, S Amalfitano et al. Water. Res., 2016, 206:135~145.

    45. [45]

      J M Calo, L Madhavan, J Kirchner, E J Bain. Chem. Eng. J., 2012, 189:237~243.

    46. [46]

      M Ramos, W Yane, X Li et al. J. Phys. Chem. C, 2009, 113:14591~14594.

    47. [47]

      W Yan, R Vasic, A Frenkel et al. Environr. Sci. Technol., 2012, 46:7018~7026. 

    48. [48]

      X Jiang, D Ying, D Ye et al. Bioresour. Technol., 2017, 252:134~142.

    49. [49]

      H Wu, J Zhang, P Li et al. Ecol. Eng., 2011, 37(4):560~568. 

    50. [50]

      J Tamahrajah, I Goncharova, I Pytskii et al. Appl. Clay Sci., 2017, 143:134~141. 

    51. [51]

      M Kalaruban, P Loganathan, J Kandasamy et al. Sep. Purif. Technol., 2017, 189:260~266. 

    52. [52]

      M Sohail, B Adeloju. Talanta, 2016, 153:83~88. 

    53. [53]

      X Guo, Z Yang, H Liu et al. Sep. Purif. Technol., 2015, 146:227~234. 

    54. [54]

      Y Zhang, G B Douglas, L Pu et al. Sci. Total. Environ., 2017, 598:1140~1150. 

    55. [55]

      H H Wang, D G Kim, H S Shin et al. J. Hazard. Mater., 2011, 185:1513~1521. 

    56. [56]

      S M Hosseini, T Tosco. J. Contam. Hydrol., 2015, 179:182~195. 

    57. [57]

      S Ryu, S W Jeong, A Jang et al. Appl. Catal.B, 2011, 105(1/2):128~135.

    58. [58]

      T Shubair, O Eljamal, A M E Khalil et al. Sep. Purif. Technol., 2018, 193:242~254. 

    59. [59]

      C N Reddy, A N Kumar, S V Mohan. J. Hazard. Mater., 2017, 343:49~58.

    60. [60]

      A Khan, S M Prabhu, J Park et al. J. Ind. Eng. Chem., 2016, 47:86~93.

    61. [61]

      R Yamaguchi, S Kurosu, M Suzuki et al. Chem. Eng. J., 2018, 334:1537~1549. 

    62. [62]

      X Man, X A Ning, H Zou et al. Chemosphere, 2017, 191:839~847.

    63. [63]

      M Cai, J Su, G Lian et al. Ultrason. Sonochem., 2016, 31:193~200. 

    64. [64]

      W W Li, Y Zhang, J B Zhao et al. Bioresource. Technol., 2013, 149:38~43. 

    65. [65]

      Y B Zhang, Y W Liu, Y W Jing et al. J. Environ. Sci., 2012, 24:720~727. 

    66. [66]

      J Park, J H Yoon, S Depuydt et al. Ecotox. Environ. Safe., 2016, 126:147~153. 

    67. [67]

      S A Messele, O S G P Soares, J J M Órfão et al. Catal. Today, 2015, 240:73~79. 

    68. [68]

      R C Martins, L R Henriques, R M Quinta-Ferreira. Chem. Eng. J., 2013, 100:225~233. 

    69. [69]

      J Singh, J K Yang, Y Y Hang. J. Environ. Manage., 2016, 175:60~66. 

  • 加载中
    1. [1]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    2. [2]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    3. [3]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    4. [4]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    5. [5]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    6. [6]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    7. [7]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    8. [8]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    9. [9]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    10. [10]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    11. [11]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    12. [12]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    13. [13]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    14. [14]

      Ping YeLingshuang QinMengyao HeFangfang WuZengye ChenMingxing LiangLibo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-0. doi: 10.3866/PKU.WHXB202311032

    15. [15]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    16. [16]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    17. [17]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    18. [18]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    19. [19]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    20. [20]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

Metrics
  • PDF Downloads(22)
  • Abstract views(1267)
  • HTML views(445)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return