Citation: LAN Mei-chen, SHEN Bo-xiong, WANG Jian-qiao, ZHAO Peng. Performance of activated carbon supported nickel catalysts in the pyrolysis of waste plastics to produce carbon nanotubes[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(11): 1313-1319. shu

Performance of activated carbon supported nickel catalysts in the pyrolysis of waste plastics to produce carbon nanotubes

  • Corresponding author: SHEN Bo-xiong, shenbx@hebut.edu.cn
  • Received Date: 29 August 2019
    Revised Date: 25 September 2019

    Fund Project: The project was supported by the Natural Science Foundation of Tianjin (18JCZDJC39800), Major Science and Technology Special Projects in Tianjin (18ZXSZSF00040), Tianjin Science Popularization Project(18KPXMSF00080), Tianjin Science and Technology Special Project(18PTZWHZ00010)and Hebei Postgraduate Innovation Subsidy Project (CXZZBS2019035)the Natural Science Foundation of Tianjin 18JCZDJC39800Major Science and Technology Special Projects in Tianjin 18ZXSZSF00040Hebei Postgraduate Innovation Subsidy Project CXZZBS2019035Tianjin Science and Technology Special Project 18PTZWHZ00010Tianjin Science Popularization Project 18KPXMSF00080

Figures(10)

  • A series of Ni based catalysts are prepared through impregnation method with coconut shell, bamboo charcoal and charcoal activated carbons as the support; their catalytic performance in the pyrolysis of waste plastics to produce carbon nanotubes was comparatively investigated. The structure and morphology of the catalyst and carbon nanotubes were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope, Raman spectroscopy, thermogravimetric analysis and nitrogen physisorption. The results show that carbon nanotubes with the highest yield and the best quality can be produced by using the nickel catalyst supported on coconut shell activated carbon (Ni/CSAC). In addition, the effect of reaction temperature and nickel loading on the catalytic performance of Ni/CSAC in the pyrolysis of waste plastics was considered.
  • 加载中
    1. [1]

      DONG Xin. Waste plastics treatment: Energy utilization maybe become breakthrough[N]. China Energy Daily, 2018-06-11(19).

    2. [2]

      TRIPATHI P K, DURBACH S, COVILLE N J. Synthesis of multi-walled carbon nanotubes from plastic waste using a stainless-steel CVD reactor as catalyst[J]. Nanomaterials, 2017,7(10):284-292. doi: 10.3390/nano7100284

    3. [3]

      MOO J G S, VEKSHA A, OH W D, GIANNIS A, UDAYANGA W D C, LIN S X, GE L Y, LISAK G. Plastic derived carbon nanotubes for electrocatalytic oxygen reduction reaction:Effects of plastic feedstock and synthesis temperature[J]. Electrochem Commun, 2019,101:11-18. doi: 10.1016/j.elecom.2019.02.014

    4. [4]

      ZHANG Ling. The optical properties and applications of carbon nanotube film[D]. Beijing: University of Tsinghua, 2017. 

    5. [5]

      LIU X T, SHEN B X, WU Z T, PARLETT C M A, HAN Z N, GEORGE A, YUAN P, PATEL D, WU C F. Producing carbon nanotubes from thermochemical conversion of waste plastics using Ni/ceramic based catalyst[J]. Chem Eng Sci, 2018,192:882-891. doi: 10.1016/j.ces.2018.07.047

    6. [6]

      HUH Y, GREEN M L H, KIM Y H, KIM Y H, LEE J Y, LEE C J. Control of carbon nanotube growth using cobalt nanoparticles as catalyst[J]. Appl Surf Sci, 2005,249(1/4):145-150.  

    7. [7]

      MHLANGA S D, MONDAL K C, CARTER R, WITCOMB M J, COVILLE N J. The effect of synthesis parameters on the catalytic synthesis of multiwalled carbon nanotubes using Fe-Co/CaCO3 catalysts[J]. S Afr J Chem, 2009,65(14):39-49.  

    8. [8]

      YAO D D, WU C F, YANG H P, ZHANG Y S, NAHIL M A, CHEN Y Q, WILLIAMS P T, CHEN H P. Co-production of hydrogen and carbon nanotubes from catalytic pyrolysis of waste plastics on Ni-Fe bimetallic catalyst[J]. Energy Convers Manage, 2017,148:692-700. doi: 10.1016/j.enconman.2017.06.012

    9. [9]

      LIU X T, ZHANG Y S, NAHIL M A, WILLIAMS P T, WU C F. Development of Ni-and Fe-based catalysts with different metal particle sizes for the production of carbon nanotubes and hydrogen from thermo-chemical conversion of waste plastics[J]. J Anal Appl Pyrolysis, 2017,125:32-39. doi: 10.1016/j.jaap.2017.05.001

    10. [10]

      SIVAKUMAR V M, ABDULLAH A Z, MOHAMED A R, CHAI S P. Optimized parameters for carbon nanotubes synthesis over Fe and Ni catalysts VIA methane CVD[J]. Rev Adv Mater Sci, 2011,27(1):25-30.  

    11. [11]

      ACOMB J C, WU C, WILLIAMS P T. The use of different metal catalysts for the simultaneous production of carbon nanotubes and hydrogen from pyrolysis of plastic feedstocks[J]. Appl Catal B:Environ, 2016,180(894):497-510.  

    12. [12]

      ZHENG Yang-fan, WANG Jun-kai, LI Sai-sai, SONG Jian-bo, ZHANG Hai-jun. Research progress in preparaton of carbon nanotubes bu catalytic pyrolysis of polymer plastics[J]. Refractories, 2018,52(4):304-309+314. doi: 10.3969/j.issn.1001-1935.2018.04.016

    13. [13]

      JIANG Z W, SONG R J, BI W G, LU J, TANG T. Polypropylene as a carbon source for the synthesis of multi-walled carbon nanotubes via catalytic combustion[J]. Carbon, 2007,45(2):449-458. doi: 10.1016/j.carbon.2006.08.012

    14. [14]

      ZHANG Li-jian. Expermental study on construction of advanced reduction system and removal of Cr(Ⅵ)from wastewater based on activated carbon[D]. Changchun: University of Jilin, 2018. 

    15. [15]

      GONZÁLEZ Y S, COSTA C, MARQUEZ M C, RAMOS P. Thermal and catalytic degradation of polyethylene wastes in the presence of silica gel, 5A molecular sieve and activated carbon[J]. J Hazard Mater, 2011,187(1/3):101-112.  

    16. [16]

      GONG J, LIU J, JIANG Z W, WEN X, CHEN X C, MIJOWSKA E, WANG Y H, TANG T. Effect of the added amount of organically-modified montmorillonite on the catalytic carbonization of polypropylene into cup-stacked carbon nanotubes[J]. Chem Eng J, 2013,225(6):798-808.  

    17. [17]

      GONG J, LIU J, WAN D, CHEN X C, WEN X, MIJOWSKA E, JIANG ZW, WANG Y H, TANG T. Catalytic carbonization of polypropylene by the combined catalysis of activated carbon with Ni2O3 into carbon nanotubes and its mechanism[J]. Appl Catal A:Gen, 2012,449(1):112-120.  

    18. [18]

      FUERTES A B, ALVAREZ S. Graphitic mesoporous carbons synthesised through mesostructured silica templates[J]. Carbon, 2004,42(15):3049-3055. doi: 10.1016/j.carbon.2004.06.020

    19. [19]

      LIOU T H. Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation[J]. Chem Eng J, 2010,158(2):129-142.  

    20. [20]

      WAN H Z, LI L, CHEN Y, GONG J L, DUAN M Q, LIU C, ZHANG J, WANG H. One pot synthesis of Ni12P5 hollow nanocapsules as efficient electrode materials for oxygen evolution reactions and supercapacitor applications[J]. Electrochim Acta, 2017,229:380-386. doi: 10.1016/j.electacta.2017.01.169

    21. [21]

      HUANG Z P, CHEN Z B, CHEN Z Z, LV C C, MENG H, ZHANG C. Ni12P5 Nanoparticles as an efficient catalyst for hydrogen generation via electrolysis and photoelectrolysis[J]. ACS Nano, 2014,8(8):8121-8129. doi: 10.1021/nn5022204

    22. [22]

      ABOUL-ENEIN A A, AWADALLAH A E. Production of nanostructured carbon materials using Fe-Mo/MgO catalysts via mild catalytic pyrolysis of polyethylene waste[J]. Chem Eng J, 2018,354:802-816. doi: 10.1016/j.cej.2018.08.046

    23. [23]

      GONG J, LIU J, WAN D, CHEN X C, WEN X, MIJOWSKA E, JIANG Z W, WANG Y H, TANG T. Catalytic carbonization of polypropylene by the combined catalysis of activated carbon with Ni2O3 into carbon nanotubes and its mechanism[J]. Appl Catal A:Gen, 2012,449:112-20. doi: 10.1016/j.apcata.2012.09.028

    24. [24]

      LIU X T, SUN H M, WU C F, PATEL D, HUANG J. Thermal chemical conversion of high-density polyethylene for the production of valuable carbon nanotubes using Ni/AAO membrane catalyst[J]. Energy Fuels, 2018,32(4):4511-4520. doi: 10.1021/acs.energyfuels.7b03160

    25. [25]

      DANAFAR F, FAKHRU'L-RAZI A, SALLEH M A M, BIAK D R A. Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes-A review[J]. Chem Eng J, 2009,155(1/2):37-48.  

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    3. [3]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    4. [4]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    5. [5]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    6. [6]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    7. [7]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    8. [8]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    11. [11]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    12. [12]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    13. [13]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    16. [16]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    17. [17]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    18. [18]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    19. [19]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    20. [20]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

Metrics
  • PDF Downloads(12)
  • Abstract views(1524)
  • HTML views(257)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return