Citation: QIU Qian-yuan, CHEN Qian-yang, LIU Zhi-jun, LIU Jiang. Biochar derived from coconut as fuel for the direct carbon solid oxide fuel cell[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(3): 352-360. shu

Biochar derived from coconut as fuel for the direct carbon solid oxide fuel cell

  • Corresponding author: LIU Jiang, jiangliu@scut.edu.cn
  • Received Date: 19 November 2018
    Revised Date: 8 January 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China 91745203The project was supported by the National Natural Science Foundation of China U1601207Guangdong Innovative and Entrepreneurial Research Team Program 2014ZT05N200Special Funds of Guangdong Province Public Research and Ability Construction 2014A010106008The project was supported by the National Natural Science Foundation of China (91745203, U1601207), Special Funds of Guangdong Province Public Research and Ability Construction (2014A010106008) and Guangdong Innovative and Entrepreneurial Research Team Program (2014ZT05N200)

Figures(8)

  • Coconut char is prepared by pyrolysis and used as the fuel for the direct carbon solid oxide fuel cell (DC-SOFCs), which are composed of yttrium-stabilized zirconia (YSZ) electrolyte and silver and gadolinium-doped ceria (Ag-GDC) cermet electrodes. The microstructure and composition of coconut char are characterized and the performances of DC-SOFCs with coconut char as fuel was investigated. The results show that the as-prepared coconut biochar has a mesoporous structure and a particle size of several microns; moreover, it contains K and Ca elements, favorable for the Boudouard reaction. A peak power density of 255 mW/cm2 is observed for the DC-SOFC operated at 800 ℃ with coconut char as fuel; it increases to 274 mW/cm2 when the char is loaded with Fe as a promoter to improve the reverse Boudouard reaction. The discharging time of the cell with 0.5 g Fe-loaded coconut char operated at a constant current density of 0.5 A/cm2 lasts for 17.6 h, representing a fuel conversion of 39%, demonstrating the feasibility and superiority of coconut char as a fuel for DC-SOFCs.
  • 加载中
    1. [1]

      RAGAUSKAS A J, WILLIAMS C K, DAVISON B H, BRITOVSEK G, CAIRNEY J, ECKERT C A, JR F W, HALLETT J P, LEAK D J, LIOTTA C L. The path forward for biofuels and biomaterials[J]. Science, 2006,311(5760):484-489. doi: 10.1126/science.1114736

    2. [2]

      CHEN J, LI C, RISTOVSKI Z, MILIC A, GU Y, ISLAM M S, WANG S, HAO J, ZHANG H, HE C, GUO H, FU H, MILJEVIC B, MORAWSKA L, THAI P, LAM Y F, PEREIRA G, DING A, HUANG X, DUMKA U C. A review of biomass burning:Emissions and impacts on air quality, health and climate in China[J]. Sci Total Environ, 2017,579:1000-1034. doi: 10.1016/j.scitotenv.2016.11.025

    3. [3]

      PAN Gen-xing, LING Zhen-heng, LI Lian-qing, ZHANG A-feng, ZHENG Jin-wei, ZHANG Xu-hui. Prospective on biomass carbon industrialization of organic waste from agriculture and rural areas in China[J]. J Agri Sci Technol, 2011,13(1):75-82. doi: 10.3969/j.issn.1008-0864.2011.01.12

    4. [4]

      WANG Yuan-yuan, QIN Hai-tang, DENG Fu-ming, GONG Shu-fang, ZHENG Xiao-wei, FAN Hai-kuo. Overview and trend study of global coconut plantation industry development based on faostat from 2000 to 2016[J]. World Trop Agri Inform, 2018, 5: 1-13.

    5. [5]

      LU Kun. Analysisi of production and trade development situation of chinese coconut industry[J]. World Trop Agri Inform, 2017,9/10:1-6.  

    6. [6]

      MINH N Q. Ceramic fuel cells[J]. J Am Ceram Soc, 1993,76(3):563-588. doi: 10.1111/jace.1993.76.issue-3

    7. [7]

      HAJIMOLANA S A, HUSSAIN M A, DAUD W M A W, SOROUSH M, SHAMIRI A. Mathematical modeling of solid oxide fuel cells:A review[J]. Renewable Sustainable Energy Rev, 2011,15(4):1893-1917. doi: 10.1016/j.rser.2010.12.011

    8. [8]

      JABOBSON A J. Materials for solid oxide fuel cells[J]. Chem Mater, 2010,22(3):660-674.  

    9. [9]

      CAO D, SUN Y, WANG G. Direct carbon fuel cell:Fundamentals and recent developments[J]. J Power Sources, 2007,167(2):250-257. doi: 10.1016/j.jpowsour.2007.02.034

    10. [10]

      RADY A C, GIDDEY S, BADWAL S P S, LADEWIG B P, BHATTACHARYA S. Review of fuels for direct carbon fuel cells[J]. Energy Fuels, 2012,26(3):1471-1488. doi: 10.1021/ef201694y

    11. [11]

      GIDDEY S, BADWAL S P S, KULKARNI A, MUMMINGS C. A comprehensive review of direct carbon fuel cell technology[J]. Prog Energy Combust, 2012,38(3):360-399. doi: 10.1016/j.pecs.2012.01.003

    12. [12]

      XIE Yong-min, LI Jiang-lin, HOU Jin-xing, WU Pei-jia, LIU Jiang, LIU Qing-sheng. Direct use of coke in solid oxide fuel cell[J]. J Fuel Chem Technol, 2018,46(10):1168-1174. doi: 10.3969/j.issn.0253-2409.2018.10.003

    13. [13]

      XIE Y M, TANG Y B, LIU J. A verification of the reaction mechanism of direct carbon solid oxide fuel cells[J]. J Solid State Electr, 2013,17(1):121-127. doi: 10.1007/s10008-012-1866-5

    14. [14]

      TANG Y, LIU J, SUI J. A novel direct carbon solid oxide fuel cell[J]. Ecs Trans, 2009,25(2):1109-1114.  

    15. [15]

      TANG Y B, LIU J. Fueling solid oxide fuel cells with activated carbon[J]. Acta Phys Chim Sin, 2010,26(5):1191-1194.  

    16. [16]

      BAI Y H, LIU Y, TANG Y B, XIE Y M, LIU J. Direct carbon solid oxide fuel cell-a potential high performance battery[J]. Int J Hydrogen Energy, 2011,36(15):9189-9194. doi: 10.1016/j.ijhydene.2011.04.171

    17. [17]

      CAI W Z, LIU J, XIE Y, XIAO J, LIU M. An investigation on the kinetics of direct carbon solid oxide fuel cells[J]. J Solid State Electrochem, 2016,20(8):2207-2216. doi: 10.1007/s10008-016-3216-5

    18. [18]

      LIU J, ZHOU M Y, ZHANG Y P, LIU Z J, XIE Y M, CAI W Z, YU F Y, ZHOU Q, WANG X Q, NI M, LIU M L. Electrochemical oxidation of carbon at high temperature:Principles and applications[J]. Energy Fuels, 2017,32(4):4107-4117.  

    19. [19]

      ZHOU Q, CAI W.Z, ZHANG Y P, LIU J, YUAN L L, YU F Y, WANG X Q, LIU M L. Electricity generation from corn cob char though a direct carbon solid oxide fuel cell[J]. Biomass Bioenergy, 2016,91:250-258. doi: 10.1016/j.biombioe.2016.05.036

    20. [20]

      DUDEK M, TOMCZYK P, SOCHA R, SKRZYPKIEWCZ M, JEWULSKI J. Biomass fuels for direct carbon fuel cell with solid oxide electrolyte[J]. Int J Electrochem Sci, 2013,8:3229-3253.  

    21. [21]

      CAI W, LIU J, LIU P, LIU Z, XU H, CHEN B, LI Y, ZHOU Q, LIU M, NI M. A direct carbon solid oxide fuel cell fueled with char from wheat straw[J]. Int Energy Res, 2018,110.  

    22. [22]

      CAI W, ZHOU Q, XIE Y, LIU J, LONG G, CHENG S, LIU M. A direct carbon solid oxide fuel cell operated on a plant derived biofuel with natural catalyst[J]. Appl Energy, 2016,179:1232-1241. doi: 10.1016/j.apenergy.2016.07.068

    23. [23]

      MUNNINGS C, KULKARNI A, GIDDEY S, BADWALAD S P S. Biomass to power conversion in a direct carbon fuel cell[J]. Int J Hydrogen Energy, 2014,39(23):12377-12385. doi: 10.1016/j.ijhydene.2014.03.255

    24. [24]

      YU Liang, YU Fang-yong, YUAN Li-li, CAI Wei-zi, LIU Jiang, YANG Cheng-hao, LIU Mei-lin. Electrical performance of Ag-based ceramic composite electrodeds and theire application in solid oxide fuel cells[J]. Acta Phys Chim Sin, 2016,32(2):503-509.  

    25. [25]

      KOPUSCINSKI J, RAHMAN M, GUPTA R, MIMS C A, HILL J M. K2CO3 catalyzed CO2 gasification of ash-free coal. Interactions of the catalyst with carbon in N2 and CO2 atmosphere[J]. Fuel, 2014,117:1181-1189. doi: 10.1016/j.fuel.2013.07.030

    26. [26]

      PERANDER M, DEMARTINI N, BRINK A, KRAMB J, KARLSTROM O, HEMMING J, MOILANEN A, KONTTINEN J, HUPA M. Catalytic effect of Ca and K on CO2 gasification of spruce wood char[J]. Fuel, 2015,150:464-472. doi: 10.1016/j.fuel.2015.02.062

    27. [27]

      JI Y, LU Z, ZHAO X, HE T M, SU W. Study on the properties of Al2O3-doped (ZrO2)0.92 (Y2O3)0.08 electrolyte[J]. Solid State Ionics, 1999,126(3):277-283.  

    28. [28]

      TANAKA S, UEMURA T, ISHIZAKI K-I, NAGAYOSHI K, IKENAGA N-O, OHME H, SUZUKI T, YAMASHITA H, AMPO M. CO2 gasification of iron-loaded carbons:Activation of the iron catalyst with CO[J]. Energy Fuels, 1995,9(1):45-52. doi: 10.1021/ef00049a007

  • 加载中
    1. [1]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    2. [2]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    3. [3]

      Qianqian ZHULihui XUHong PANChengjian YAOHong ZHAONan MAXiaolin SHIZihan SHENWeijun ZHANGZhongjian WANG . Waste cotton fabric-ased porous carbon materials: Preparation and wave-absorbing properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1555-1564. doi: 10.11862/CJIC.20250040

    4. [4]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    5. [5]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    6. [6]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    7. [7]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    8. [8]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    11. [11]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    12. [12]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    13. [13]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    14. [14]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    15. [15]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    16. [16]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    17. [17]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    18. [18]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    19. [19]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    20. [20]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

Metrics
  • PDF Downloads(16)
  • Abstract views(2346)
  • HTML views(619)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return