Citation: Zhang Ling, Liu Yingxiang, Zhao Zhongxiang, Cai Xiaoli, Ma Yuzhuo. Study on the Interation of Indazole Derivatives with PI3Kδ Inhibitors by 3D-QSAR, Docking and Molecular Dynamics Simulation[J]. Chemistry, ;2018, 81(2): 148-157. shu

Study on the Interation of Indazole Derivatives with PI3Kδ Inhibitors by 3D-QSAR, Docking and Molecular Dynamics Simulation

  • Corresponding author: Liu Yingxiang, liuyingxiang62@162.com
  • Received Date: 29 September 2017
    Accepted Date: 5 December 2017

Figures(8)

  • Phosphoinositide 3-kinase delta (PI3Kδ) is involved in inflammatory process of chronic obstructive pulmonary disease (COPD) and has been identified as a new potential therapeutic target. In this paper, three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics were used to study the interaction between 47 indazole derivatives and P13Kδ, and corresponding models were established. The comparative molecular field analysis (CoMFA) model q2=0.719, r2=0.972, comparative molecular similarity index analysis (CoMSIA) model q2=0.649, r2=0.983, indicating that constructed QSAR models have stable and reliable predictive ability. CoMFA and CoMSIA contour maps could graphically describe the effect of different fields on activity. The steric, hydrophobic and hydrogen bond acceptor fields have greater contribution to the activity. Then, the binding mode of small molecule and P13Kδ was explored by molecular docking. The results showed that indazole compounds were mainly bound to P13Kδ by hydrogen bonding and hydrophobic interaction, and the results of docking were further verified by molecular dynamics simulation. Finally, eight compounds were designed based on the information obtained from the contour maps, docking mode and molecular dynamics simulation, they can combine well with PI3Kδ.
  • 加载中
    1. [1]

      I M Adcock, P C Chou, A Durham et al. Biochem. Soc. Transac., 2009, 37(4): 824~829. 

    2. [2]

      F M Foster, C J Traer, S M Abraham et al. J. Cell Sci., 2003, 116(15): 3037~3040. 

    3. [3]

      I Angulo, O Vadas, F Garçon et al. Science, 2013, 342(6160): 866~781. 

    4. [4]

       

    5. [5]

      M Wei, X Wang, Z Song et al. Med. Res. Rev., 2015, 35(4): 720~752. 

    6. [6]

      Q W Fan, Z A Knight, D D Goldenberg et al. Cancer Cell, 2006, 9(5): 341~349. 

    7. [7]

      S E Herman, A L Gordon, A J Wagner et al. Blood, 2010, 116(12): 2078~2088. 

    8. [8]

      Y To, K Ito, Y Kizawa et al. Am. J. Respir. Crit. Care Med., 2010, 182(7): 897~904. 

    9. [9]

      K D Down, A Amour, I R Baldwin et al. J. Med. Chem., 2015, 58(18): 7381~7399. 

    10. [10]

      G W A Milne. J. Chem. Inf. Model., 2010, 50(50): 2053~2053. 

    11. [11]

       

    12. [12]

      J Gasteige, M Marsili. Tetrahedron, 1980, 36(22): 3219~3228. 

    13. [13]

       

    14. [14]

      J Zheng, G Xiao, J Guo et al. Chem. Biol. Drug Des., 2011, 78(2): 314~321. 

    15. [15]

      R D Cramer, D E Patterson, J D Bunce. J. Am. Chem. Soc., 1988, 110(18): 5959~5967. 

    16. [16]

      R T Kroemer, P Hecht, S Guessregen et al. Perspect. Drug Discov., 1998, (12/14): 41~56. 

    17. [17]

      A Golbraikh, A Tropsha. J. Mol. Graph. Model., 2002, 20(4): 269~276. 

    18. [18]

      R Thomsen, M H Christensen. J. Med. Chem., 2006, 49(11): 3315~3321. 

    19. [19]

      L Y Qin, Z Ruan, R J Cherney et al. Bioorg. Med. Chem. Lett., 2017, 27(4): 855~861. 

    20. [20]

      D S D Van, E Lindahl, B Hess et al. J. Comput. Chem., 2005, 26(16): 1701~1718. 

    21. [21]

      E Lindahl, Hess B, D V D Spoel. Mol. Model. Annual., 2001, 7(8): 306~317. 

    22. [22]

      Oostenbrink C, Villa A, A E Mark et al. J. Comput. Chem., 2004, 25(13): 1656~1676. 

    23. [23]

      D M F V Aalten, R Bywater, J B C Findlay et al. J. Comput. Aided Mol. Des., 1996, 10(3): 255~262. 

    24. [24]

      R D Skeel, D J Hardy, J C Phillips. J. Comput. Phys., 2007, 225(1): 1~5. 

    25. [25]

      D Dai, L Zhou, X Zhu et al. J. Mol. Struct., 2017, 1137: 33~42. 

  • 加载中
    1. [1]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    4. [4]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    5. [5]

      Zimo YangYan TongYongbo LiuQianlong LiuZhihao NiYuna HeYu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577

    6. [6]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    7. [7]

      Xiongbo SongJinwen XiaoJuan WuLi SunLong Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844

    8. [8]

      Xue-Peng Zhang Yuchi Long Yushu Pan Jiding Wang Baoyu Bai Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107

    9. [9]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    10. [10]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    11. [11]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    12. [12]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    13. [13]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    14. [14]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    15. [15]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    16. [16]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    17. [17]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    18. [18]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    19. [19]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    20. [20]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

Metrics
  • PDF Downloads(65)
  • Abstract views(5713)
  • HTML views(1756)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return