Citation: LI Jian, WANG Xue-ying, HUANG Xin, HONG Shuai-ling, YANG Li-na. Preparation of the CuWO4/SBA-15 catalyst and its performance in the photocatalytic oxidation desulfurization[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(5): 632-640. shu

Preparation of the CuWO4/SBA-15 catalyst and its performance in the photocatalytic oxidation desulfurization

  • Corresponding author: YANG Li-na, 767527173@qq.com
  • Received Date: 1 February 2020
    Revised Date: 14 April 2020

    Fund Project: General Scientific Research Project of Liaoning Provincial Department of Education L2016018Program for Science and Technology Agency of Liaoning Province 20170540585The project was supported by Program for Liaoning Excellent Talents in University (LJQ2015062), Program for Science and Technology Agency of Liaoning Province (20170540585) and General Scientific Research Project of Liaoning Provincial Department of Education (L2015296, L2016018)Program for Liaoning Excellent Talents in University LJQ2015062General Scientific Research Project of Liaoning Provincial Department of Education L2015296

Figures(15)

  • The CuWO4/SBA-15 catalyst was prepared with CuWO4 as the active composite and mesoporous SBA-15 molecular sieve as the support and characterized by XRD, N2 adsorption and desorption, FT-IR, UV-vis, SEM, EDS and TEM; the performance of CuWO4/SBA-15 catalyst in the photocatalytic oxidation desulfurization (PODS) was investigated by using the dodecane solution of dibenzothiophene (DBT) as the model fuel. The results show that the CuWO4/SBA-15 catalyst can maintain the two-dimensional hexagonal mesoporous structure of the support and the active component is evenly distributed on the support; the surface area, pore size and pore volume of the CuWO4/SBA-15 catalyst decrease with an increase in the amount of active component. Compared with CuWO4, the CuWO4/SBA-15 catalyst displays a blue shift in absorption boundary of UV-vis spectra and an increase of the band gap. With a CuWO4/SiO2 mass ratio of 0.07, catalyst mass percentage of 3% in the model fuel, O/S molar ratio of 10:1, and extractant/oil volume ratio of 1:1, the desulfurization rate reaches 81.5% by carrying out the PODS reaction under light for 100 min, which is obviously higher than that over CuWO4; moreover, no obvious decrease of catalytic activity for CuWO4/SBA-15 was observed after 6 runs of PODS. It is proposed that ·OH and h+ are the main reactive intermediates in PODS.
  • 加载中
    1. [1]

      ZHOU Ning, ZHANG Yue-yue, HUANG Xian-li, XU Ze-hua, LIANG Yuan-wei, SHI Min-yuan. Photocatalytic desulfurization activity and mechanism of Pt/g-C3N4 in isooctane under visible light irradiation[J]. Petrochem Technol, 2017,46(8):1012-1016. doi: 10.3969/j.issn.1000-8144.2017.08.009

    2. [2]

      ZHANG G, GAO M, TIAN M, ZHAO W F. In situ hydrothermal preparation and photocatalytic desulfurization performance of graphene wrapped TiO2 composites[J]. J Solid State Chem, 2019,279120953. doi: 10.1016/j.jssc.2019.120953

    3. [3]

      MEHDI M K. Facile hydrothermal synthesis of egg-like BiVO4 nanostructures for photocatalytic desulfurization of thiophene under visible light irradiation[J]. J Mater Sci:Mater Electron, 2019,30(19):17735-17740. doi: 10.1007/s10854-019-02123-0

    4. [4]

      ZHAO Shuai, LIU Ya-ya, MA Bo-wen, SHEN Jian. Preparation of TiO2-β/SBA-15 and its performance on photocatalytic oxidation desulfurization[J]. Petrochem Technol, 2018,47(8):795-801. doi: 10.3969/j.issn.1000-8144.2018.08.004

    5. [5]

      WANG Zhe, JI Gui-jie, SHEN Jian. Study of photocatalytic oxidation desulfurization of gasoline with TiO2/SBA-15[J]. Pet Process Petrochem, 2015,6(4):51-54. doi: 10.3969/j.issn.1005-2399.2015.04.010

    6. [6]

      WANG Xin, ZHANG Jing. Preparation of CdS phase junction by solid phase method and photocatalytic performance[J]. J Liaoning Shihua Univ, 2019,39(3):30-34. doi: 10.3969/j.issn.1672-6952.2019.03.006

    7. [7]

      LU X W, LI X Z, QIAN J C, MIAO N M, YAO C, CHEN Z G. Synthesis and characterization of CeO2/TiO2 nanotube arrays and enhanced photocatalytic oxidative desulfurization performance[J]. J Alloys Compd, 2016,661:363-371. doi: 10.1016/j.jallcom.2015.11.148

    8. [8]

      KHYZHUN O Y, BEKENEV V L, SOLONIN Y M. First-principles calculations and X-ray spectroscopy studies of the electronic structure of CuWO4[J]. J Alloys Compd, 2009,480(2):184-189. doi: 10.1016/j.jallcom.2009.01.119

    9. [9]

      HE De-wen, YANG Yang, TANG Jian-jun, ZHOU Kang-gen, CHEN Wei, CHEN Yi-qing. CuWO4 promoting TiO2 photocatalytic degradation of atrazine in water[J]. Technol Water Treat, 2019,45(6):43-47.  

    10. [10]

      HAN Na, CHEN Zheng-li, SU Wei, SHEN Jian, REN Tie-qiang. Preparation of BiVO4/SBA-15 catalyst and its performance in the photocatalytic oxidation desulfurization[J]. J Fuel ChemTechnol, 2019,47(2):191-198. doi: 10.3969/j.issn.0253-2409.2019.02.008 

    11. [11]

      ZHOU K D, DING Y C, ZHANG L F, WU H D, GUO J. Synthesis of mesoporous ZnO/TiO2-SiO2 composite material and its application in photocatalytic adsorption desulfurization without the addition of an extra oxidant[J]. Dalton trans, 2020,49(5):1600-1612. doi: 10.1039/C9DT04454J

    12. [12]

      XU M Z, YANG L N, LI J. Photocatalytic oxidative desulfurization of dibenzothiophene on TiO2 modified bimodal mesoporous silica[J]. China Pet Process Petrochem Technol, 2017,19(3):59-67.  

    13. [13]

      ZHANG Lu-lu, SUN Yue, WANG Zhe, SUN Yao, ZHAN Jin-you, SHEN Jian, HAO Hui-yuan. Preparatione of TiO2/SBA-15 and its photocatalytic oxidation desulfurization performanc[J]. J Chin Ceram Soc, 2016,44(1):56-62.  

    14. [14]

      VIGNESH K, PRIYANKA R, HARIHARAN R, RAJARAJANET M, SUGANTHIA A. Fabrication of CdS and CuWO4 modified TiO2nanoparticles and its photocatalytic activity under visible light irradiation[J]. J Ind Eng Chem, 2014,20(2):435-443.  

    15. [15]

      ZHAO D Y, FENG J L, HUO Q S, MELOSH N, FREDRICKSON G H, CHMELKA B F, STUCKY G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998,279(5350):548-552. doi: 10.1126/science.279.5350.548

    16. [16]

      PATTERSON E M, SHELDEN C E, STOCKTON B H. Kubelka-Munk optical properties of a barium sulfate white reflectance standard[J]. Appl Opt, 1977,16(3):729-732. doi: 10.1364/AO.16.000729

    17. [17]

      GAILLARD N, CHANG Y, DEANGELIS A, HIGGINS S, BRAUN A. A nanocomposite photoelectrode made of 2.2 eV band gap copper tungstate (CuWO4) and multi-wall carbon nanotubes for solar-assisted water splitting[J]. Int J Hydrogen Energy, 2013,38(8):3166-3176. doi: 10.1016/j.ijhydene.2012.12.104

    18. [18]

      ZHANG Yuan, LU Wei-wei. Construction and photoelectric conversion properties of WO3/BiVO4 composite film photoelectrode[J]. J Henan Univ Sci Technol(Nat Sci), 2019,40(4):94-99+10.  

    19. [19]

      CHEN Xin-fu, WANG Zhen-cui, MA Dan-ni, WANG Qu-zhen, LUO Ya-qiong, ZENG Jue-ping. Preparation of TiO2/SBA-15 mesoporous composite and its photocatalytic performance[J]. Environ Sci Technol, 2019,42(10):57-63.  

    20. [20]

      ZHANG Feng-li, ZHENG Yuang-hui, ZHAN Ying-ying, LIN Xing-yi, ZHANG Han-hui, ZHENG Qi. Studies on Ag-TiO2/KIT-6 composite nanosized photocatalyst[J]. Spectrosc Spect Anal, 2009,29(8):152-156.  

    21. [21]

      LI Yan-rong, SONG Ming-juan, GU Hai-Fang, HUANG Yao, NIU Guo-Xing, ZHAO Dong-Yuan. Improved synthesis of SBA-15 mesoporous silica fitting for industrial production[J]. Chin J Catal, 2012,33(8):1360-1366.  

    22. [22]

      HUANG Jian, ZHANG Si-yue, GUO Ji-hui, XU Xian-meng, MA Xin. Studise on stability of cobalt modified SBA-15 molecular sieve[J]. Mod Chem Res, 2019(9):74-77. doi: 10.3969/j.issn.1672-8114.2019.09.034

    23. [23]

      SOHRABNEZHAD S, POURAHMAD A, SALAVATIYAN T. CuO-MMT nanocomposite:Effective photocatalyst for the discoloration of methylene blue in the absence of H2O2[J]. Appl Phys A, 2016,122(2):1-12.  

    24. [24]

      WANG G J, ZHANG J K, LIU Y. Catalytic oxidative desulfurization of benzothiophene with hydrogen peroxide over Fe/AC in a biphasic model diesel-acetonitrile system[J]. Korean J Chem Eng, 2013,30(8):1559-1565. doi: 10.1007/s11814-013-0052-5

    25. [25]

      WU J, LI J, LIU J, BAI J, YANG L. A novel Nb2O5/Bi2WO6 heterojunction photocatalytic oxidative desulfurization catalyst with high visible light-induced photocatalytic activity[J]. RSC Adv, 2017,7:51046-51054. doi: 10.1039/C7RA09829D

    26. [26]

      GUO Mei, REN Xue-chang, WANG Jian-zhao, KANG Fu, MENG Yue. Preparation and photocatalytic properties of TiO2/pg-C3N4 composite photocatalyst[J]. China Environ Sci, 2019,39(12):5119-5125.  

    27. [27]

      GAO Ling, WANG Ying, SHI Li-ying, JI An. Highly selective fluorescent chemosensor for Cu2+ insitu-assembled within mesoporous SBA-15[J]. Chin J Sens Actuators, 2006,19(1):70-73.  

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    5. [5]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    7. [7]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    8. [8]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    9. [9]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    10. [10]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    11. [11]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    12. [12]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    13. [13]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    14. [14]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    15. [15]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    16. [16]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    17. [17]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    18. [18]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    19. [19]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    20. [20]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

Metrics
  • PDF Downloads(6)
  • Abstract views(697)
  • HTML views(172)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return