Citation: Jinyun Zhao, Jiapeng Hu, Ruilai Liu, Hao Lin, Xingping Fu. Fabrication of La-MOFs Adsorbents and Its Fluorine Removal Performance[J]. Chemistry, ;2021, 84(1): 75-80. shu

Fabrication of La-MOFs Adsorbents and Its Fluorine Removal Performance

  • Corresponding author: Jiapeng Hu, 22402414@qq.com
  • Received Date: 14 July 2020
    Accepted Date: 19 August 2020

Figures(7)

  • La-MOFs adsorbents were fabricated by hydrothermal method, and the structure and morphology of prepared La-MOFs adsorbents were analyzed by scanning electron microscope, fourier transform infrared spectroscopy, X-ray powder diffraction and N2 adsorption-desorption isotherms. The La-MOFs adsorbents were woolen spherical structure with the most pore size of 15.84 nm and specific surface area of 16.95 m2/g and lanthanum fluoride crystals were formed after adsorption of fluoride ions. The effects of parameters, such as mass ratio of lanthanum nitrate and 2-aminoterephthalic acid, reaction temperature and time, etc. on fluoride adsorption by the La-MOFs adsorbents were investigated. When LN/AA=4:3, DMF reaction temperature 130℃, reaction time 24 h and methanol reaction temperature 120℃, the adsorption capacity of La-MOFs reaches the maximum value of 43.1 mg/g. The pseudo-second-order has been found suitable for describing the kinetics process of the fluoride ions absorption on the La-MOFs adsorbent while the net rate can thus be sequentially controlled in a multi-stage condition. The fitness of adsorption data by Freundlich model was superior to Langmuir model. The adsorption process is an exothermic reaction, and increasing the temperature is beneficial to the adsorption process.
  • 加载中
    1. [1]

      Wang X, Pan S, Zhang M, et al. Sci. Total Environ., 2019, 685(5): 401~409.

    2. [2]

      Rajput A, Raj S K, Sharma P P, et al. J. Dispersion Sci. Technol., 2019, 40(8): 1101~1109. 

    3. [3]

      Singh J, Singh P, Singh A. Arab. J. Chem., 2016, 9(6): 815~824. 

    4. [4]

      He J, Zhang K, Wu S, et al. J. Hazard. Mater., 2016, 303(4): 119~130. 

    5. [5]

      Wang Y, Chen N, Wei W, et al. Desalination, 2011, 276(1-3): 161~168. 

    6. [6]

      Lu G, Huang X, Li Y, et al. J. Energy Chem., 2020, 43(5): 8~15.

    7. [7]

      Tang Y, Wang S, Zhou X, et al. Chem. Eng. Sci., 2020, 213(2): 13~18. 

    8. [8]

      Liu W, Dai X, Bai Z, et al. Environ. Sci. Technol., 2017, 51(7): 3911~3921. 

    9. [9]

      Sheng D, Zhu L, Xu C, et al. Environ. Sci. Technol., 2017, 51(6): 3471~3479. 

    10. [10]

      Xie Y, Chen C, Ren X, et al. Prog. Mater. Sci., 2019, 103: 180~234. 

    11. [11]

      Zhu K, Chen C, Xu H, et al. ACS Sustain. Chem. Eng., 2017, 5(8): 6795~6802. 

    12. [12]

       

    13. [13]

      Viswanathan N, Meenakshi S. J. Fluorine Chem., 2008, 129(7): 645~653. 

    14. [14]

       

    15. [15]

       

    16. [16]

      Workeneh K, Zereffa E A, Segne T A, et al. J. Nanomater., 2019, (2): 1~12. 

    17. [17]

       

    18. [18]

      Tahir R, Muhammad A, Khalid M C, et al. Desalin. Water Treat., 2018, 108: 207~215. 

  • 加载中
    1. [1]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    2. [2]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    3. [3]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    4. [4]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    5. [5]

      Chunguang Rong Miaojun Xu Xingde Xiang Song Liu . 化学热力学熵变计算的教学探讨. University Chemistry, 2025, 40(8): 323-329. doi: 10.12461/PKU.DXHX202409146

    6. [6]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    7. [7]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    8. [8]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    9. [9]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    10. [10]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    11. [11]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    12. [12]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    13. [13]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    14. [14]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    15. [15]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    16. [16]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    17. [17]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    18. [18]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    19. [19]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    20. [20]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

Metrics
  • PDF Downloads(6)
  • Abstract views(864)
  • HTML views(119)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return