Citation: Li Xiaochen, Cao Jing. Interfacial Modification by Porphyrin/Phthalocyanine Complexes for Perovskite Solar Cells[J]. Chemistry, ;2020, 83(11): 962-969. shu

Interfacial Modification by Porphyrin/Phthalocyanine Complexes for Perovskite Solar Cells

  • Corresponding author: Cao Jing, caoj@lzu.edu.cn
  • Received Date: 16 June 2020
    Accepted Date: 10 August 2020

Figures(5)

  • In order to solve the problems of energy shortage and environmental pollution, the research of solar cells has attracted extensive scientific attention. Over the past decade, perovskite solar cells (PSCs) have been developing rapidly, gradually becoming one of the most powerful competitors for commercial silicon-based solar cells. However, the inevitable formation of inherent crystallographic defects during the low-temperature solution process severely limits the improvement of the efficiency and stability of PSCs. Porphyrin/phthalocyanine metal complexes with the excellent stability and photovoltaic properties have been considered for improving the efficiency and long-term stability of cells by using porphyrin/phthalocyanine complexes to passivate defects on the surface and grain boundaries of perovskite films. In this review, we summarize the research progress of highly efficient and stable perovskite solar cells using porphyrin/phthalocyanine metal complexes to modify the perovskite films. Meanwhile, the existent problem and future development of PSCs with porphyrin/phthalocyanine complexes are discussed as well.
  • 加载中
    1. [1]

      https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200630.pdf(accessed: June 2020).

    2. [2]

      Tan H R, Jain A, Voznyy O, et al. Science, 2017, 33(6326): 722~726.

    3. [3]

      Jena A K, Kulkarni A, Miyasaka T. Chem. Rev., 2019, 119(5): 3036~3103.

    4. [4]

      Wang L G, Zhou H P, Hu J N, et al. Science, 2019, 363(6424): 265~270.

    5. [5]

      Gao Y, Shi E, Deng S, et al. Nat. Chem., 2019, 11(12): 1151~1157.

    6. [6]

      Wang Y, Dar M I, Ono L K, et al. Science, 2019, 365(6453): 591~595.

    7. [7]

      Wang Z, Shi Z J, Li T T, et al. Angew. Chem. Int. Ed., 2017, 56(5): 1190~1212.

    8. [8]

      Wang K, Subhani W S, Wang Y, et al. Adv. Mater., 2019, 31(50): 1902037.

    9. [9]

      Ye F, Zhang H, Wang P, et al. ACS Appl. Mater. Interf., 2019, 11(46): 43452~43459.

    10. [10]

      Zhang F, Bi D, Pellet N, et al. Energy Environ. Sci., 2018, 11(12): 3480~3490.

    11. [11]

      Jung M, Ji S-G, Kim G, et al. Chem. Soc. Rev., 2019, 48(7): 2011~2038.

    12. [12]

      Dagar J, Castro-Hermosa S, Gasbarri M, et al. Nano Res., 2018, 11(5): 2669~2681.

    13. [13]

      Liu D, Zhou W, Tang H, et al. Sci. China Chem., 2018, 61(10): 1278~1284.

    14. [14]

      Chen W, Zhou Y, Chen G, et al. Adv. Energy Mater., 2019, 9(19): 1803872.

    15. [15]

      Saliba M, Correa-Baena J-P, Wolff C M, et al. Chem. Mater., 2018, 30(13): 4193~4201.

    16. [16]

      Liu Z, Krückemeier L, Krogmeier B, et al. ACS Energy Lett., 2019, 4(1): 110~117.

    17. [17]

      Lee J W, Lee D K, Jeong D N, et al. Adv. Funct. Mater., 2018, 29(47): 1807047.

    18. [18]

      Shi D, Adinolfi V, Comin R, et al. Science, 2015, 347(6221): 519~522.

    19. [19]

      Ran C, Xu J, Gao W, et al. Chem. Soc. Rev., 2018, 47(12): 4581~4610.

    20. [20]

      Zheng X, Deng Y, Chen B, et al. Adv. Mater., 2018, 30(52): 1803428.

    21. [21]

      Chen Y, Li N, Wang L, et al. Nat. Commun., 2019, 10(1): 1112.

    22. [22]

      Meggiolaro D, Motti S G, Mosconi E, et al. Energy Environ. Sci., 2018, 11(3): 702~713.

    23. [23]

      Nie R, Mehta A, Park B W, et al. J. Am. Chem. Soc., 2018, 140(3): 872~875.

    24. [24]

      Li X, Chen C C, Cai M, et al. Adv. Energy Mater., 2018, 8(20): 1800715.

    25. [25]

      Xu J, Buin A, Ip A H, et al. Nat. Commun., 2015, 6(1): 7081.

    26. [26]

      Huang Z, Proppe A H, Tan H, et al. ACS Energy Lett., 2019, 4(7): 1521~1527.

    27. [27]

      Liu S, Guan Y, Sheng Y, et al. Adv. Energy Mater., 2020, 10(13): 1902492.

    28. [28]

      Rajagopal A, Yao K, Jen A K, et al. Adv. Mater., 2018, 30(32): 1800455.

    29. [29]

      Yang S, Dai J, Yu Z, et al. J. Am. Chem. Soc., 2019, 141(14): 5781~5787.

    30. [30]

      Meng L, Sun C, Wang R, et al. J. Am. Chem. Soc., 2018, 140(49): 17255~17262.

    31. [31]

      Zheng X, Chen B, Dai J, et al. Nat. Energy, 2017, 2(7): 17102.

    32. [32]

      Saidaminov M I, Kim J, Jain A, et al. Nat. Energy, 2018, 3(8): 648~654.

    33. [33]

      Su G X, Li Q Z, Ishida M, et al. Angew. Chem. Int. Ed., 2020, 59(4): 1537~1541.

    34. [34]

      Li Q Z, Li C J, Kim J, et al. J. Am. Chem. Soc., 2019, 141(13): 5294~5302.

    35. [35]

      Zeng K W, Tong Z F, Ma L, et al. Energy Environ. Sci., 2020, 13(6): 1617~1657.

    36. [36]

      Kurumisawa Y, Higashino T, Nimura S, et al. J. Am. Chem. Soc., 2019, 141(25): 9910~9919.

    37. [37]

      Zeng K W, Chen Y Y, Zhu W H, et al. J. Am. Chem. Soc., 2020, 142(11): 5154~5161.

    38. [38]

      Urbani M, de la Torre G, Nazeeruddin M K, et al. Chem. Soc. Rev., 2019, 48(10): 2738~2766.

    39. [39]

      Li C L, He R Q, Liang Q, et al. Sci. China Chem., 2020, 10.1007/s11426-020-9725-3.

    40. [40]

      Wygant B R, Ye A Z, Dolocan A, et al. J. Am. Chem. Soc., 2019, 141(45): 18170~18181.

    41. [41]

      Zhang F, Kim D H, Lu H, et al. J. Am. Chem. Soc., 2019, 141(14): 5972~5979.

    42. [42]

      Feng X X, Chen R H, Nan Z A, et al. Adv. Sci., 2019, 6(5): 1802040.

    43. [43]

      Zhou Y, Zhong H, Han J H, et al. J. Mater. Chem. A, 2019, 7(46): 26334~26341.

    44. [44]

      Wang P, Wu Y, Cai B, et al. Adv. Funct. Mater., 2019, 29(47): 1807661.

    45. [45]

      Wu W Q, Yang Z, Rudd P N, et al. Sci. Adv., 2019, 5(3): eaav8925.

    46. [46]

      Li C P, Yin J, Chen R H, et al. J. Am. Chem. Soc., 2019, 141(15): 6345~6351.

    47. [47]

      Li X C, Li C L, Wu Y Y, et al. Sci. China Chem., 2020, 10.1007/s11426-020-9710-7.

    48. [48]

      Gao K, Zhu Z, Xu B, et al. Adv. Mater., 2017, 29(47): 1703980.

    49. [49]

      Balis N, Verykios A, Soultati A, et al. ACS Appl. Energy Mater., 2018, 1(7): 3216~3229.

    50. [50]

      Li B, Zheng C Y, Liu H, et al. ACS Appl. Mater. Interf., 2016, 8(41): 27438~27443.

    51. [51]

      Xiao G B, Yu Z F, Cao J, et al. CCS Chem., 2020, 2: 488~494.

    52. [52]

      Gao Y, Wu Y, Lu H, et al. Nano Energy, 2019, 59: 517~526.

    53. [53]

      Zheng X, Troughton J, Gasparini N, et al. Joule, 2019, 3(8): 1963~1976.

    54. [54]

      Feng X X, Lv X D, Liang Q, et al. ACS Appl. Mater. Interf., 2020, 12(14): 16236~16242.

    55. [55]

      Liu Y, Qi J, Peng X, et al. Org. Electron., 2018, 59: 414~418.

    56. [56]

      Wu S F, Liu Q W, Zheng Y, et al. J. Power Sources, 2017, 359: 303~310.

    57. [57]

      Suzuki A, Hayashi Y, Yamasaki Y, et al. AIP Conf. Proc., 2019, 2067(1): 020010.

    58. [58]

      Suzuki A, Okumura H, Yamasaki Y, et al. Appl. Surf. Sci., 2019, 488: 586~592.

    59. [59]

      Cao J, Li C P, Lv X D, et al. J. Am. Chem. Soc., 2018, 140(37): 11577~11580.

    60. [60]

      Li C P, Lv X D, Cao J, et al. Chin. J. Chem., 2018, 37(1): 30~34.

    61. [61]

      Xie C, Zhou C, Bin Y, et al. Appl. Phys. Express, 2019, 12(6): 064006.

  • 加载中
    1. [1]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    2. [2]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    3. [3]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    4. [4]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    5. [5]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    6. [6]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    7. [7]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    8. [8]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    9. [9]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    10. [10]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    11. [11]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    12. [12]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    13. [13]

      Rui LiHuan LiuYinan JiaoShengjian QinJie MengJiayu SongRongrong YanHang SuHengbin ChenZixuan ShangJinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011

    14. [14]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    15. [15]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    16. [16]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    17. [17]

      Caiyun JinZexuan WuGuopeng LiZhan LuoNian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-0. doi: 10.1016/j.actphy.2025.100094

    18. [18]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    19. [19]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    20. [20]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

Metrics
  • PDF Downloads(21)
  • Abstract views(1394)
  • HTML views(464)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return