Citation: Xiaomin Cao, Chenxi Li, Hanbing Qi, Zhongchen Yu. Application of Zero-Valent Iron Coupled Anaerobic Biological Method in Wastewater Treatment[J]. Chemistry, ;2021, 84(4): 365-371. shu

Application of Zero-Valent Iron Coupled Anaerobic Biological Method in Wastewater Treatment

  • Corresponding author: Chenxi Li, chenxi_170@hotmail.com
  • Received Date: 15 July 2020
    Accepted Date: 29 November 2020

Figures(2)

  • The coupling of zero-valent iron (ZVI) with microorganisms is a promising technology that has received widespread attention for contaminants removal from wastewater. The coupling technology effectively integrates the high efficiency of ZVI technology and the economics of anaerobic biotechnology, and effectively reduces the bioinhibition and toxicity of refractory organic substances under the synergistic effect of multiple microelectric field and anaerobic microorganisms. This article reviews the potential mechanism of this technology for industrial wastewater treatment, the main operating parameters and influencing conditions in practical applications, and the research progress in the treatment of biorefractory pollutants including chlorinated compounds, heavy metals and dyes. The current research status of ZVI and anaerobic microorganism coupling technology for high-efficiency removal of the above-mentioned pollutants is summarized, and the feasible strategies of this technology in practical engineering applications are prospected.
  • 加载中
    1. [1]

      Sun Y K, Li J X, Huang T L, et al. Water Res., 2016, 100: 277~295. 

    2. [2]

      Fu F L, Dionysiou D D, Liu H. J. Hazard. Mater., 2014, 267: 194~205. 

    3. [3]

      Dorathi P J, Kandasamy P. J. Environ. Sci., 2012, 24(4): 765~773. 

    4. [4]

       

    5. [5]

      Shokes T E, Möller G. Environ. Sci. Technol., 1999, 33(2): 282~287. 

    6. [6]

      Yin W Z, Wu J H, Li P, et al. Chem. Eng. J., 2012, 184: 198~204. 

    7. [7]

      Neumann A, Kaegi R, Voegelin A, et al. Environ. Sci. Technol., 2013, 47(9): 4544~4554. 

    8. [8]

      Shimizu A, Tokumura M, Nakajima k, et al. J. Hazard. Mater., 2012, 201/202: 60~67.

    9. [9]

      Tiwari M K, Guha S, Harendranath C S, et al. Appl. Microbiol. Biot., 2006, 71(2): 145~154. 

    10. [10]

      Matheson L J, Tratnyek P G. Environ. Sci. Technol., 1994, 28(12): 2045~2053. 

    11. [11]

      Deng B L, Burris D R, Campbell T J. Environ. Sci. Technol., 1999, 33(15): 2651~2656. 

    12. [12]

      Feng J, Lim T. Chemosphere, 2005, 59(9): 1267~1277. 

    13. [13]

      Sakulchaicharoen N, O'carrol D M, Herrera J E. J. Contam. Hydrol., 2010, 118(3): 117~127.

    14. [14]

      Ye J C, Chiu P C. Environ. Sci. Technol., 2006, 40(12): 3959~3964. 

    15. [15]

       

    16. [16]

      Noubactep C. Open Environ. J., 2007, 1: 9~13. 

    17. [17]

       

    18. [18]

      Daniels L, Belay N, Rajagopal B S, et al. Science, 1987, 237(4814): 509~512. 

    19. [19]

      Dinh H T, Kuever J, Mussmann M, et al. Nature, 2004, 427(6977): 829~832. 

    20. [20]

      Zhang Y B, Jing Y W, Zhang J X, et al. J. Chem. Technol. Biot., 2011, 86(2): 199~204. 

    21. [21]

      Novak P J, Daniels L, Parkin G F. Environ. Sci. Technol., 1998, 32(20): 3132~3136. 

    22. [22]

      Ghangrekar M M, Asolekar S R, Joshi S G. Water Res., 2005, 39(6): 1123~1133. 

    23. [23]

      You G X, Wang P F, Hou J, et al. Crit. Rev. Env. Sci. Tech., 2017, 47(10): 877~907. 

    24. [24]

      Zhang J X, Zhang Y B, Xie Q, et al. Chem. Eng. J., 2011, 174(1): 159~165. 

    25. [25]

      Ou C J, Shen J Y, Zhang S, et al. Water Res., 2016, 101: 457~466. 

    26. [26]

      Zhang J X, Zhang Y B, Li Y, et al. Bioresource Technol., 2012, 114: 102~108. 

    27. [27]

      Bae S, Hanna K. Environ. Sci. Technol., 2015, 49(17): 10536~10543. 

    28. [28]

      Deng S H, Li D S, Yang X, et al. Bioresource Technol., 2012, 114: 102~108. 

    29. [29]

      Bang S, Johnson M D, Korfiatis G P, et al. Water Res., 2005, 39(5): 763~770. 

    30. [30]

      Gregory K B, Mason M G, Picken H D, et al. Environ. Eng. Sci., 2000, 17(3): 169~181. 

    31. [31]

      Bai H, Kang Y, Quan H, et al. J. Environ. Manag., 2013, 129: 350~356. 

    32. [32]

      Yin W Z, Wu J H, Li P, et al. Chem. Eng. J., 2012, 210: 309~315. 

    33. [33]

      Cheng T, Dai Y Z, Chen C, et al. Asian J. Chem., 2012, 24: 2579~2584.

    34. [34]

      Rysavy J P, Yan T, Novak P J, et al. Water Res., 2005, 39(4): 569~578. 

    35. [35]

      Wu D, Zheng S, Ding A, et al. J. Hazard. Mater., 2015, 286: 1~6. 

    36. [36]

      Zhu L, Gao K, Jin J, et al. Environ. Sci. Pollut. Res., 2014, 21(22): 12747~12756. 

    37. [37]

      Royer R A, Burgos W D, Fisher A S, et al. Environ. Sci. Technol., 2002, 36(9): 1939~1946. 

    38. [38]

      Yu X, Amrhein C, Deshusses M A, et al. Environ. Sci. Technol., 2006, 40(4): 1328~1334. 

    39. [39]

      Lee J, Hozalski R M, Amold W A. Chemosphere, 2007, 66(11): 2127~2135. 

    40. [40]

      HendersonA D, DemondA H. Environ. Eng. Sci., 2007, 24(4): 401~423. 

    41. [41]

      Yoon I, Kim K, Bang S, et al. Appl. Catal. B, 2011, 104(1): 185~192.

    42. [42]

      Gillham R W, O'hannesin S F. Groundwater, 1994, 32(6): 958~967. 

    43. [43]

      Dong J, Zhao Y S, Zhao R, et al. J. Environ. Sci., 2010, 22(11): 1741~1747. 

    44. [44]

      Bell L S, Devlin J F, Gillham R W, et al. J. Contam. Hydrol., 2003, 66(3): 201~217.

    45. [45]

      Ma C W, Wu Y Q. Environ. Geol., 2008, 55(1): 47~54. 

    46. [46]

      Zhang J X, Zhang Y B, Quan X. Biochem. Eng. J., 2015, 94: 85~91. 

    47. [47]

      He F, Zhao Y, Paul C. Water Res., 2010, 44(7): 2360~2370. 

    48. [48]

      Wang Z, Wang H W, Ma L M. Desalin. Water Treat., 2012, 49(1-3): 95~105. 

    49. [49]

      Gerlach R, Cunningham A B, Caccavo F. Environ. Sci. Technol., 2000, 34(12): 2461~2464. 

    50. [50]

      Gandhi S, Oh B, Schnoor J L, et al. Water Res., 2002, 36(8): 1973~1982. 

    51. [51]

      Tanboonchuy V, Hsu J, Grisdanurak N, et al. Environ. Sci. Pollut. R., 2011, 18: 857~64. 

    52. [52]

      Biterna M, Antonoglou L, Lazou E, et al. Chemosphere, 2010, 78(1): 7~12. 

    53. [53]

      Wan J F, Klein J, Simon S, et al. Water Res., 2010, 44(17): 5098~5108. 

    54. [54]

      Gu B H, Watson D B, Wu L Y, et al. Environ. Monit. Assess., 2002, 77(3): 293~309. 

    55. [55]

      Shrestha R A, Lama B, Joshi J, et al. Environ. Sci. Pollut. R., 2008, 15(4): 303~307. 

    56. [56]

      Kowalski K P, Søgaard E G. Chemosphere, 2014, 117: 108~114. 

    57. [57]

      Mak M S H, Rao P, Lo I M C. Water Res., 2009, 43(17): 4296~4304. 

    58. [58]

      Mitra P, Sarkar D, Chakrabarti S, et al. Chem. Eng. J., 2011, 171: 54~60. 

    59. [59]

      Calabrò P S, Moraci N, Suraci P. J. Hazard. Mater., 2012, 207-208: 111~116.

    60. [60]

      Shi J L, Yi S N, He H L, et al. Chem. Eng. J., 2013, 230: 166~171. 

    61. [61]

      Xiao S L, Ma H, Shen M W, et al. Colloid Surf. A, 2011, 381(1): 48~54.

    62. [62]

      N Kishimoto, S Iwano, Y Narazaki. Water Air Soil Poll., 2011, 221(1): 183~189.

    63. [63]

      Wanner C, Eggenberger U, Mäder U. Appl. Geochem., 2011, 26(8): 1513~1523. 

    64. [64]

      Bai H, Kang Y, Quan H E, et al. Int. J. Miner. Process., 2012, 112-113: 71~76.

    65. [65]

      Liu Y W, Zhang Y B, Quan X, et al. Bioresource Technol., 2011, 102(3): 2578~2584. 

    66. [66]

      Li W W, Zhang Y, Zhao J B, et al. Bioresource Technol., 2013, 149: 38~43. 

  • 加载中
    1. [1]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    2. [2]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    3. [3]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    4. [4]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    5. [5]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    6. [6]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    7. [7]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    8. [8]

      Ping YeLingshuang QinMengyao HeFangfang WuZengye ChenMingxing LiangLibo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-0. doi: 10.3866/PKU.WHXB202311032

    9. [9]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    10. [10]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    11. [11]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    12. [12]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    13. [13]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    14. [14]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    15. [15]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    16. [16]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    17. [17]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    18. [18]

      Meng-Yin WangRuo-Bei HuangJian-Feng XiongJing-Hua TianJian-Feng LiZhong-Qun Tian . Critical Role and Recent Development of Separator in Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2307017-0. doi: 10.3866/PKU.WHXB202307017

    19. [19]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    20. [20]

      Zhiliang Li . An Overview of Research on the History of Catalysis Science in China. University Chemistry, 2024, 39(7): 398-404. doi: 10.3866/PKU.DXHX202310101

Metrics
  • PDF Downloads(16)
  • Abstract views(1194)
  • HTML views(407)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return