Acid properties of Ni-modified ZSM-12: A first-principles study
- Corresponding author: FENG Gang, fenggang@ncu.edu.cn ZHANG Rong-bin, rbzhang@ncu.edu.cn
Citation:
FENG Gang, XIAO Qi, WANG Da-shan, ZHOU Jian, LU Zhang-hui, ZHANG Rong-bin. Acid properties of Ni-modified ZSM-12: A first-principles study[J]. Journal of Fuel Chemistry and Technology,
;2020, 48(6): 704-712.
DEDECEK J, SOBALIK Z, WICHTERLOVA B. Siting and distribution of framework aluminium atoms in silicon-rich zeolites and impact on catalysis[J]. Catal Rev, 2012,54(2):135-223. doi: 10.1080/01614940.2012.632662
CUNDY C S, COX P A. The hydrothermal synthesis of zeolites:History and development from the earliest days to the present time[J]. Chem Rev, 2003,103(3):663-702. doi: 10.1021/cr020060i
GIL B, MOKRZYCKI L, SULIKOWSKI B, OLEJNICZAK Z, WALAS S. Desilication of ZSM-5 and ZSM-12 zeolites:Impact on textural, acidic and catalytic properties[J]. Catal Today, 2010,152(1/4):24-32.
DEMUTH T, HAFNER J, BENCO L, TOULHOAT H. Structural and acidic properties of mordenite:An ab initio density-functional study[J]. J Phys Chem B, 2000,104(19):4593-4607. doi: 10.1021/jp993843p
CHEN F, ZHANG L, FENG G, WANG X, ZHANG R, LIU J. Trivalent ions modification for high-silica mordenite:A first principles study[J]. Appl Surf Sci, 2018,433(1):627-638.
GAO W, AMOO C C, ZHANG G, JAVED M, MAZONDE B, LU C, YANG R, XING C, TSUBAKI N. Insight into solvent-free synthesis of MOR zeolite and its laboratory scale production[J]. Microporous Mesoporous Mater, 2019,280:187-194. doi: 10.1016/j.micromeso.2019.01.041
STANCIAKOVA K, ENSING B, GOLTL F, BULO R, EWECKHUYSEN B M. Cooperative role of water molecules during the Initial stage of water-induced zeolite dealumination[J]. ACS Catal, 2019,9(6):5119-5135. doi: 10.1021/acscatal.9b00307
MARTÍNEZ C, CCORMA A. Inorganic molecular sieves:Preparation, modification and industrial application in catalytic processes[J]. Coordin Chem Rev, 2011,255(13):1558-1580.
LIU Z, WANG Y, XIE Z. Thoughts on the future development of zeolitic catalysts from an industrial point of view[J]. Chin J Catal, 2012,33(1):22-38.
ZANG Y, DONG X, PING D, GENG J, DANG H. Green routes for the synthesis of hierarchical HZSM-5 zeolites with low SiO2/Al2O3 ratios for enhanced catalytic performance[J]. Catal Commun, 2018,113:51-54. doi: 10.1016/j.catcom.2018.05.018
VAN LAAK A N C, SAGALA S L, ZECEVIC J, FRIEDRICH H, DE JONGH P E, DE JONG K P. Mesoporous mordenites obtained by sequential acid and alkaline treatments-catalysts for cumene production with enhanced accessibility[J]. J Catal, 2010,276(1):170-180.
CARVALHO K T G, URQUIETA-GONZALEZ E A. Microporous-mesoporous ZSM-12 zeolites:Synthesis by using a soft template and textural, acid and catalytic properties[J]. Catal Today, 2015,243:92-102. doi: 10.1016/j.cattod.2014.09.025
LAPIERRE R B, ROHRMAN A C, SCHLENKER J L, WOOD J D, RUBIN M, KROHRBAUGH W J. The framework topology of ZSM-12:A high-silica zeolite[J]. Zeolites, 1985,5(6):346-348. doi: 10.1016/0144-2449(85)90121-6
KAMIMURA Y, ITABASHI K, OKUBO T. Seed-assisted, OSDA-free synthesis of MTW-type zeolite and "Green MTW" from sodium aluminosilicate gel systems[J]. Microporous Mesoporous Mater, 2012,147(1):149-156. doi: 10.1016/j.micromeso.2011.05.038
AKYALCIN S, AKYALCIN L, BJØRGEN M. Optimization of desilication parameters of low-silica ZSM-12 by Taguchi method[J]. Microporous Mesoporous Mater, 2019,273:256-264. doi: 10.1016/j.micromeso.2018.07.014
DIMITROV L, MIHAYLOV M, HADJIIVANOV K, MAVRODINOVA V. Catalytic properties and acidity of ZSM-12 zeolite with different textures[J]. Microporous Mesoporous Mater, 2011,143(2/3):291-301.
WANG Q, CUI Z M, CAO C Y, SONG W G. 0.3 angstrom makes the difference:Dramatic changes in methanol-to-olefin activities between H-ZSM-12 and H-ZSM-22 zeolites[J]. J Phys Chem C, 2011,115(50):24987-24992. doi: 10.1021/jp209182u
MOKRZYCKI Ł, SULIKOWSKI B, OLEJNICZAK Z. Properties of desilicated ZSM-5, ZSM-12, MCM-22 and ZSM-12/MCM-41 derivatives in isomerization of α-pinene[J]. Catal Lett, 2008,127(3/4):296-303.
LI C, LI L F, WU W, WANG D S, TOKTAREV A V, KIKHTYANIN O V, ECHEVSKII G V. Highly selective synthesis of 2, 6-dimethylnaphthalene over alkaline treated ZSM-12 zeolite[J]. Proc Eng, 2011,18:200-205. doi: 10.1016/j.proeng.2011.11.032
BAI X, SUN K, WU W, YAN P, YANG J. Methylation of naphthalene to prepare 2, 6-dimethylnaphthalene over acid-dealuminated HZSM-12 zeolites[J]. J Mol Catal A:Chem, 2009,314(1/2):81-87.
MILLINI R, FRIGERIO F, BELLUSSI G, PAZZUCONI G, PEREGO C, POLLESEL P, ROMANO U. A priori selection of shape-selective zeolite catalysts for the synthesis of 2, 6-dimethylnaphthalene[J]. J Catal, 2003,217(2):298-309.
FELLAH M F. Adsorption of hydrogen sulfide as initial step of H2S removal:A DFT study on metal exchanged ZSM-12 clusters[J]. Fuel Process Technol, 2016,144:191-196. doi: 10.1016/j.fuproc.2016.01.003
FELLAH M F. Hydrogen adsorption on M-ZSM-12 zeolite clusters (M=K, Na and Li):A density functional theory study[J]. J Porous Mater, 2014,21(5):883-888. doi: 10.1007/s10934-014-9838-z
POCKAJ M, MEDEN A, LOGAR N Z, RANGUS M, MALI G, LEZCANO-GONZALEZ I, BEALE A, MGOLOBIC A. Structural investigations in pure-silica and Al-ZSM-12 with MTEA or TEA cations[J]. Microporous Mesoporous Mater, 2018,263:236-242. doi: 10.1016/j.micromeso.2017.12.015
SANHOOB M A, MURAZA O, AL-MUTAIRI E M, ULLAH N. Role of crystal growth modifiers in the synthesis of ZSM-12 zeolite[J]. Adv Powder Technol, 2015,26(1):188-192.
YOO K, KASHFI R, GOPAL S, SMIRNIOTIS P G, GANGODA M, BOSE R N. TEABr directed synthesis of ZSM-12 and its NMR characterization[J]. Microporous Mesoporous Mater, 2003,60(1/3):57-68.
ZHANG W, BURCKLE E, CSMIRNIOTIS P G. Characterization of the acidity of ultrastable Y, mordenite, and ZSM-12 via NH3-stepwise temperature programmed desorption and Fourier transform infrared spectroscopy[J]. Microporous Mesoporous Mater, 1999,33(1):173-185.
NGUYEN C M, REYNIERS M-F, MARIN G B. Adsorption thermodynamics of C1-4 alcohols in H-FAU, H-MOR, H-ZSM-5, and H-ZSM-22[J]. J Catal, 2015,322:91-103. doi: 10.1016/j.jcat.2014.11.013
NING W, YANG X, ZHENG J, SUN X, PAN M, LI R. An environmentally friendly route to prepare hierarchical ZSM-12 using waste liquor as partial nutrients[J]. Mater Chem Phys, 2019,223:299-305. doi: 10.1016/j.matchemphys.2018.10.069
JEGATHEESWARAN S, CHENG C M, CHENG C H. Effects of adding alcohols on ZSM-12 synthesis[J]. Microporous Mesoporous Mater, 2015,201:24-34. doi: 10.1016/j.micromeso.2014.09.008
FENG G, YANG D Q, KONG D J, LIU J W, LU Z H. A comparative computational study on the synthesis prescriptions, structures and acid properties of B-, Al-and Ga-incorporated MTW-type zeolites[J]. RSC Adv, 2014,4(89):47906-47920. doi: 10.1039/C4RA06114D
SANHOOB M A, MURAZA O, YOSHIOKA M, QAMARUDDIN M, YOKOI T. Lanthanum, cerium, and boron incorporated ZSM-12 zeolites for catalytic cracking of n-hexane[J]. J Anal Appl Pyrolysis, 2018,129:231-240. doi: 10.1016/j.jaap.2017.11.007
DE BAERDEMAEKER T, MVLLER U, YILMAZ B. Alkali-free synthesis of Al-MTW using 4-cyclohexyl-1, 1-dimethylpiperazinium hydroxide as structure directing agent[J]. Microporous Mesoporous Mater, 2011,143(2/3):477-481.
FENG G, LU Z H, YANG D, KONG D, LIU J. A first principle study on Fe incorporated MTW-type zeolite[J]. Microporous Mesoporous Mater, 2014,199:83-92. doi: 10.1016/j.micromeso.2014.08.009
MOUDRAKOVSKI I L, SAYARI A, RATCLIFFE C I, RIPMEESTER J A, PRESTON K F. Vanadium-modified zeolite with the structure of ZSM-12:EPR and NMR studies[J]. J Phys Chem, 1994,98(42):10895-10900. doi: 10.1021/j100093a035
MAL N K, BHAUMIK A, KUMAR R R, AMASWAMY A V. Sn-ZSM-12, a new, large pore MTW type tin-silicate molecular sieve:Synthesis, characterization and catalytic properties in oxidation reactions[J]. Catal Lett, 1995,33(3):387-394.
SANTOS M R F D, PEDROSA A M G, SOUZA M J B D. Oxidative desulfurization of thiophene on TiO2/ZSM-12 zeolite[J]. Mater Res-ibero-am J Mater, 2016,19(1):24-30.
FENG G, LIAN Y Y, YANG D, LIU J, KONG D. Distribution of Al and adsorption of NH3 and pyridine in ZSM-12:A computational study[J]. Can J Chem, 2013,91(10):925-934. doi: 10.1139/cjc-2013-0135
VILHENA F D S., SERRA R M, BOIX A V. DFT study of Li+ and Na+ positions in mordenites and hydration stability[J]. Comput Theor Chem, 2016,1091:115-121. doi: 10.1016/j.comptc.2016.07.017
ZHANG W M, SMIRNIOTIS P G, GANGODA M, BOSE R N. Bronsted and lewis acid sites in dealuminated ZSM-12 and beta zeolites characterized by NH3-STPD, FT-IR, and MAS NMR spectroscopy[J]. J Phys Chem B, 2000,104(17):4122-4129. doi: 10.1021/jp993072p
FENG G, YANG J, WANG C, LU K, ZHOU J, LIU J, WANG X, ZHANG R, ZHANG N. A first-principles study on Pd modified ZSM-12 zeolites[J]. Microporous Mesoporous Mater, 2018,260:227-234. doi: 10.1016/j.micromeso.2017.10.009
KRESSE G, FURTHMVLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comp Mater Sci, 1996,6(1):15-50.
KRESSE G, FURTHMVLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B, 1996,54(16):11169-11186. doi: 10.1103/PhysRevB.54.11169
PERDEW J P, BURKE K, ERNZERHOF M. Perdew, burke, and ernzerhof reply[J]. Phys Rev Lett, 1998,80(4):891-891. doi: 10.1103/PhysRevLett.80.891
TANG W, SANVILLE E, HENKELMAN G. A grid-based bader analysis algorithm without lattice bias[J]. J Phys-Condens Matter, 2009,21(8)084204. doi: 10.1088/0953-8984/21/8/084204
SANVILLE E, KENNY S D, SMITH R. Improved grid-based algorithm for Bader charge allocation[J]. J Comput Chem, 2007,28(5):899-908.
HENKELMAN G, ARNALDSSON A, JÓNSSON H. A fast and robust algorithm for bader decomposition of charge density[J]. Comp Mater Sci, 2006,36(3):354-360.
VANOVA SHOR E A, NASLUZOV V A, SHOR A M. Reverse hydrogen spillover onto zeolite-supported metal clusters:An embedded cluster density functional study of models M6(M=Rh, Ir, or Au)[J]. J Phys Chem C, 2007,111(33):12340-12351. doi: 10.1021/jp0711287
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Zhengkun QIN , Zicong PAN , Hui TIAN , Wanyi ZHANG , Mingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429
Jie Ma , Jianxiang Wang , Jianhua Yuan , Xiao Liu , Yun Yang , Fei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693
Xu Huang , Kai-Yin Wu , Chao Su , Lei Yang , Bei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Zongyi Huang , Cheng Guo , Quanxing Zheng , Hongliang Lu , Pengfei Ma , Zhengzhong Fang , Pengfei Sun , Xiaodong Yi , Zhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580
Yufei Liu , Liang Xiong , Bingyang Gao , Qingyun Shi , Ying Wang , Zhiya Han , Zhenhua Zhang , Zhaowei Ma , Limin Wang , Yong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932
Mianfeng Li , Haozhi Wang , Zijun Yang , Zexiang Yin , Yuan Liu , Yingmei Bian , Yang Wang , Xuerong Zheng , Yida Deng . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2025, 36(3): 110199-. doi: 10.1016/j.cclet.2024.110199
Tianyao He , Gan Li , Xiaoqiang Xie , Dong Han , Yunyue Leng , Qiuli Zhang , Wenming Liu , Guobo Li , Hongxiang Zhang , Shan Huang , Ting Huang , Honggen Peng . Design of highly active meso-zeolite enveloping Pt–Ni bimetallic catalysts for degradation of toluene. Chinese Chemical Letters, 2025, 36(4): 110137-. doi: 10.1016/j.cclet.2024.110137
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Hongyang Li , Yue Liu , Xiuwen Wang , Haijing Yan , Guimin Wang , Dongxu Wang , Yilong Wang , Shuo Yang , Yanqing Jiao . Morphology engineering and electronic structure remodeling of manganese-incorporated VN for boosting urea-assisted energy-saving hydrogen production. Chinese Chemical Letters, 2025, 36(6): 110042-. doi: 10.1016/j.cclet.2024.110042
Qingyun Hu , Wei Wang , Junyuan Lu , He Zhu , Qi Liu , Yang Ren , Hong Wang , Jian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Shuyuan Pan , Zehui Yang , Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373
Xiumei LI , Yanju HUANG , Bo LIU , Yaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359