Citation: FENG Gang, XIAO Qi, WANG Da-shan, ZHOU Jian, LU Zhang-hui, ZHANG Rong-bin. Acid properties of Ni-modified ZSM-12: A first-principles study[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(6): 704-712. shu

Acid properties of Ni-modified ZSM-12: A first-principles study

  • Corresponding author: FENG Gang, fenggang@ncu.edu.cn ZHANG Rong-bin, rbzhang@ncu.edu.cn
  • Received Date: 3 March 2020
    Revised Date: 12 May 2020

    Fund Project: the National Natural Science Foundation of China 21763018the Natural Science Foundation of Jiangxi Province 20181BAB203016the National Natural Science Foundation of China 21673270The project was supported by the National Natural Science Foundation of China (21875096, 21763018, 21673270), and the Natural Science Foundation of Jiangxi Province (20181BAB203016, 20181BCD40004)the National Natural Science Foundation of China 21875096the Natural Science Foundation of Jiangxi Province 20181BCD40004

Figures(6)

  • The catalytic performance of zeolites in industry can often be enhanced by modification with transition metals and Ni is one of the most widely used transition metals for the hydrogenation and dehydrogenation catalysts. In this work, the structure and acid properties of Ni-modified HAl-ZSM-12 zeolites were investigated by the dispersion corrected periodic density functional theory. The results indicate that single Ni atoms can reduce the H atoms in the zeolites into H2 molecule, whereas the Ni clusters like Ni2 cannot. The quantity of Brønsted acid sites may decrease after the modification with single Ni atoms; the Ni atoms in the zeolites are oxidized and work as strong Lewis acid sites, which may weaken the Lewis acidity of Al3+. After modification with Ni, the Ni-modified ZSM-12 displays greater ability to adsorb hydrogen molecules. The adsorbed hydrogen molecules are dissociated to negatively charged H atoms, which do not function as Brønsted acid sites. Due to the transfer of electron from the Ni atoms to the pre-adsorbed H atoms, as revealed by the adsorption energy of NH3, the pre-adsorption of hydrogen on the Ni-modified ZSM-12 zeolites can enhance the Lewis acidity.
  • 加载中
    1. [1]

      DEDECEK J, SOBALIK Z, WICHTERLOVA B. Siting and distribution of framework aluminium atoms in silicon-rich zeolites and impact on catalysis[J]. Catal Rev, 2012,54(2):135-223. doi: 10.1080/01614940.2012.632662

    2. [2]

      CUNDY C S, COX P A. The hydrothermal synthesis of zeolites:History and development from the earliest days to the present time[J]. Chem Rev, 2003,103(3):663-702. doi: 10.1021/cr020060i

    3. [3]

      GIL B, MOKRZYCKI L, SULIKOWSKI B, OLEJNICZAK Z, WALAS S. Desilication of ZSM-5 and ZSM-12 zeolites:Impact on textural, acidic and catalytic properties[J]. Catal Today, 2010,152(1/4):24-32.  

    4. [4]

      DEMUTH T, HAFNER J, BENCO L, TOULHOAT H. Structural and acidic properties of mordenite:An ab initio density-functional study[J]. J Phys Chem B, 2000,104(19):4593-4607. doi: 10.1021/jp993843p

    5. [5]

      CHEN F, ZHANG L, FENG G, WANG X, ZHANG R, LIU J. Trivalent ions modification for high-silica mordenite:A first principles study[J]. Appl Surf Sci, 2018,433(1):627-638.  

    6. [6]

      GAO W, AMOO C C, ZHANG G, JAVED M, MAZONDE B, LU C, YANG R, XING C, TSUBAKI N. Insight into solvent-free synthesis of MOR zeolite and its laboratory scale production[J]. Microporous Mesoporous Mater, 2019,280:187-194. doi: 10.1016/j.micromeso.2019.01.041

    7. [7]

      STANCIAKOVA K, ENSING B, GOLTL F, BULO R, EWECKHUYSEN B M. Cooperative role of water molecules during the Initial stage of water-induced zeolite dealumination[J]. ACS Catal, 2019,9(6):5119-5135. doi: 10.1021/acscatal.9b00307

    8. [8]

      MARTÍNEZ C, CCORMA A. Inorganic molecular sieves:Preparation, modification and industrial application in catalytic processes[J]. Coordin Chem Rev, 2011,255(13):1558-1580.  

    9. [9]

      LIU Z, WANG Y, XIE Z. Thoughts on the future development of zeolitic catalysts from an industrial point of view[J]. Chin J Catal, 2012,33(1):22-38.  

    10. [10]

      ZANG Y, DONG X, PING D, GENG J, DANG H. Green routes for the synthesis of hierarchical HZSM-5 zeolites with low SiO2/Al2O3 ratios for enhanced catalytic performance[J]. Catal Commun, 2018,113:51-54. doi: 10.1016/j.catcom.2018.05.018

    11. [11]

      VAN LAAK A N C, SAGALA S L, ZECEVIC J, FRIEDRICH H, DE JONGH P E, DE JONG K P. Mesoporous mordenites obtained by sequential acid and alkaline treatments-catalysts for cumene production with enhanced accessibility[J]. J Catal, 2010,276(1):170-180.  

    12. [12]

      CARVALHO K T G, URQUIETA-GONZALEZ E A. Microporous-mesoporous ZSM-12 zeolites:Synthesis by using a soft template and textural, acid and catalytic properties[J]. Catal Today, 2015,243:92-102. doi: 10.1016/j.cattod.2014.09.025

    13. [13]

      LAPIERRE R B, ROHRMAN A C, SCHLENKER J L, WOOD J D, RUBIN M, KROHRBAUGH W J. The framework topology of ZSM-12:A high-silica zeolite[J]. Zeolites, 1985,5(6):346-348. doi: 10.1016/0144-2449(85)90121-6

    14. [14]

      KAMIMURA Y, ITABASHI K, OKUBO T. Seed-assisted, OSDA-free synthesis of MTW-type zeolite and "Green MTW" from sodium aluminosilicate gel systems[J]. Microporous Mesoporous Mater, 2012,147(1):149-156. doi: 10.1016/j.micromeso.2011.05.038

    15. [15]

      AKYALCIN S, AKYALCIN L, BJØRGEN M. Optimization of desilication parameters of low-silica ZSM-12 by Taguchi method[J]. Microporous Mesoporous Mater, 2019,273:256-264. doi: 10.1016/j.micromeso.2018.07.014

    16. [16]

      DIMITROV L, MIHAYLOV M, HADJIIVANOV K, MAVRODINOVA V. Catalytic properties and acidity of ZSM-12 zeolite with different textures[J]. Microporous Mesoporous Mater, 2011,143(2/3):291-301.  

    17. [17]

      WANG Q, CUI Z M, CAO C Y, SONG W G. 0.3 angstrom makes the difference:Dramatic changes in methanol-to-olefin activities between H-ZSM-12 and H-ZSM-22 zeolites[J]. J Phys Chem C, 2011,115(50):24987-24992. doi: 10.1021/jp209182u

    18. [18]

      MOKRZYCKI Ł, SULIKOWSKI B, OLEJNICZAK Z. Properties of desilicated ZSM-5, ZSM-12, MCM-22 and ZSM-12/MCM-41 derivatives in isomerization of α-pinene[J]. Catal Lett, 2008,127(3/4):296-303.  

    19. [19]

      LI C, LI L F, WU W, WANG D S, TOKTAREV A V, KIKHTYANIN O V, ECHEVSKII G V. Highly selective synthesis of 2, 6-dimethylnaphthalene over alkaline treated ZSM-12 zeolite[J]. Proc Eng, 2011,18:200-205. doi: 10.1016/j.proeng.2011.11.032

    20. [20]

      BAI X, SUN K, WU W, YAN P, YANG J. Methylation of naphthalene to prepare 2, 6-dimethylnaphthalene over acid-dealuminated HZSM-12 zeolites[J]. J Mol Catal A:Chem, 2009,314(1/2):81-87.  

    21. [21]

      MILLINI R, FRIGERIO F, BELLUSSI G, PAZZUCONI G, PEREGO C, POLLESEL P, ROMANO U. A priori selection of shape-selective zeolite catalysts for the synthesis of 2, 6-dimethylnaphthalene[J]. J Catal, 2003,217(2):298-309.  

    22. [22]

      FELLAH M F. Adsorption of hydrogen sulfide as initial step of H2S removal:A DFT study on metal exchanged ZSM-12 clusters[J]. Fuel Process Technol, 2016,144:191-196. doi: 10.1016/j.fuproc.2016.01.003

    23. [23]

      FELLAH M F. Hydrogen adsorption on M-ZSM-12 zeolite clusters (M=K, Na and Li):A density functional theory study[J]. J Porous Mater, 2014,21(5):883-888. doi: 10.1007/s10934-014-9838-z

    24. [24]

      POCKAJ M, MEDEN A, LOGAR N Z, RANGUS M, MALI G, LEZCANO-GONZALEZ I, BEALE A, MGOLOBIC A. Structural investigations in pure-silica and Al-ZSM-12 with MTEA or TEA cations[J]. Microporous Mesoporous Mater, 2018,263:236-242. doi: 10.1016/j.micromeso.2017.12.015

    25. [25]

      SANHOOB M A, MURAZA O, AL-MUTAIRI E M, ULLAH N. Role of crystal growth modifiers in the synthesis of ZSM-12 zeolite[J]. Adv Powder Technol, 2015,26(1):188-192.  

    26. [26]

      YOO K, KASHFI R, GOPAL S, SMIRNIOTIS P G, GANGODA M, BOSE R N. TEABr directed synthesis of ZSM-12 and its NMR characterization[J]. Microporous Mesoporous Mater, 2003,60(1/3):57-68.

    27. [27]

      ZHANG W, BURCKLE E, CSMIRNIOTIS P G. Characterization of the acidity of ultrastable Y, mordenite, and ZSM-12 via NH3-stepwise temperature programmed desorption and Fourier transform infrared spectroscopy[J]. Microporous Mesoporous Mater, 1999,33(1):173-185.  

    28. [28]

      NGUYEN C M, REYNIERS M-F, MARIN G B. Adsorption thermodynamics of C1-4 alcohols in H-FAU, H-MOR, H-ZSM-5, and H-ZSM-22[J]. J Catal, 2015,322:91-103. doi: 10.1016/j.jcat.2014.11.013

    29. [29]

      NING W, YANG X, ZHENG J, SUN X, PAN M, LI R. An environmentally friendly route to prepare hierarchical ZSM-12 using waste liquor as partial nutrients[J]. Mater Chem Phys, 2019,223:299-305. doi: 10.1016/j.matchemphys.2018.10.069

    30. [30]

      JEGATHEESWARAN S, CHENG C M, CHENG C H. Effects of adding alcohols on ZSM-12 synthesis[J]. Microporous Mesoporous Mater, 2015,201:24-34. doi: 10.1016/j.micromeso.2014.09.008

    31. [31]

      FENG G, YANG D Q, KONG D J, LIU J W, LU Z H. A comparative computational study on the synthesis prescriptions, structures and acid properties of B-, Al-and Ga-incorporated MTW-type zeolites[J]. RSC Adv, 2014,4(89):47906-47920. doi: 10.1039/C4RA06114D

    32. [32]

      SANHOOB M A, MURAZA O, YOSHIOKA M, QAMARUDDIN M, YOKOI T. Lanthanum, cerium, and boron incorporated ZSM-12 zeolites for catalytic cracking of n-hexane[J]. J Anal Appl Pyrolysis, 2018,129:231-240. doi: 10.1016/j.jaap.2017.11.007

    33. [33]

      DE BAERDEMAEKER T, MVLLER U, YILMAZ B. Alkali-free synthesis of Al-MTW using 4-cyclohexyl-1, 1-dimethylpiperazinium hydroxide as structure directing agent[J]. Microporous Mesoporous Mater, 2011,143(2/3):477-481.  

    34. [34]

      FENG G, LU Z H, YANG D, KONG D, LIU J. A first principle study on Fe incorporated MTW-type zeolite[J]. Microporous Mesoporous Mater, 2014,199:83-92. doi: 10.1016/j.micromeso.2014.08.009

    35. [35]

      MOUDRAKOVSKI I L, SAYARI A, RATCLIFFE C I, RIPMEESTER J A, PRESTON K F. Vanadium-modified zeolite with the structure of ZSM-12:EPR and NMR studies[J]. J Phys Chem, 1994,98(42):10895-10900. doi: 10.1021/j100093a035

    36. [36]

      MAL N K, BHAUMIK A, KUMAR R R, AMASWAMY A V. Sn-ZSM-12, a new, large pore MTW type tin-silicate molecular sieve:Synthesis, characterization and catalytic properties in oxidation reactions[J]. Catal Lett, 1995,33(3):387-394.  

    37. [37]

      SANTOS M R F D, PEDROSA A M G, SOUZA M J B D. Oxidative desulfurization of thiophene on TiO2/ZSM-12 zeolite[J]. Mater Res-ibero-am J Mater, 2016,19(1):24-30.  

    38. [38]

      FENG G, LIAN Y Y, YANG D, LIU J, KONG D. Distribution of Al and adsorption of NH3 and pyridine in ZSM-12:A computational study[J]. Can J Chem, 2013,91(10):925-934. doi: 10.1139/cjc-2013-0135

    39. [39]

      VILHENA F D S., SERRA R M, BOIX A V. DFT study of Li+ and Na+ positions in mordenites and hydration stability[J]. Comput Theor Chem, 2016,1091:115-121. doi: 10.1016/j.comptc.2016.07.017

    40. [40]

      ZHANG W M, SMIRNIOTIS P G, GANGODA M, BOSE R N. Bronsted and lewis acid sites in dealuminated ZSM-12 and beta zeolites characterized by NH3-STPD, FT-IR, and MAS NMR spectroscopy[J]. J Phys Chem B, 2000,104(17):4122-4129. doi: 10.1021/jp993072p

    41. [41]

      FENG G, YANG J, WANG C, LU K, ZHOU J, LIU J, WANG X, ZHANG R, ZHANG N. A first-principles study on Pd modified ZSM-12 zeolites[J]. Microporous Mesoporous Mater, 2018,260:227-234. doi: 10.1016/j.micromeso.2017.10.009

    42. [42]

      KRESSE G, FURTHMVLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comp Mater Sci, 1996,6(1):15-50.  

    43. [43]

      KRESSE G, FURTHMVLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B, 1996,54(16):11169-11186. doi: 10.1103/PhysRevB.54.11169

    44. [44]

      PERDEW J P, BURKE K, ERNZERHOF M. Perdew, burke, and ernzerhof reply[J]. Phys Rev Lett, 1998,80(4):891-891. doi: 10.1103/PhysRevLett.80.891

    45. [45]

      TANG W, SANVILLE E, HENKELMAN G. A grid-based bader analysis algorithm without lattice bias[J]. J Phys-Condens Matter, 2009,21(8)084204. doi: 10.1088/0953-8984/21/8/084204

    46. [46]

      SANVILLE E, KENNY S D, SMITH R. Improved grid-based algorithm for Bader charge allocation[J]. J Comput Chem, 2007,28(5):899-908.  

    47. [47]

      HENKELMAN G, ARNALDSSON A, JÓNSSON H. A fast and robust algorithm for bader decomposition of charge density[J]. Comp Mater Sci, 2006,36(3):354-360.  

    48. [48]

      VANOVA SHOR E A, NASLUZOV V A, SHOR A M. Reverse hydrogen spillover onto zeolite-supported metal clusters:An embedded cluster density functional study of models M6(M=Rh, Ir, or Au)[J]. J Phys Chem C, 2007,111(33):12340-12351. doi: 10.1021/jp0711287

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    3. [3]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    4. [4]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    8. [8]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    9. [9]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    10. [10]

      Yufei LiuLiang XiongBingyang GaoQingyun ShiYing WangZhiya HanZhenhua ZhangZhaowei MaLimin WangYong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932

    11. [11]

      Mianfeng LiHaozhi WangZijun YangZexiang YinYuan LiuYingmei BianYang WangXuerong ZhengYida Deng . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2025, 36(3): 110199-. doi: 10.1016/j.cclet.2024.110199

    12. [12]

      Tianyao HeGan LiXiaoqiang XieDong HanYunyue LengQiuli ZhangWenming LiuGuobo LiHongxiang ZhangShan HuangTing HuangHonggen Peng . Design of highly active meso-zeolite enveloping Pt–Ni bimetallic catalysts for degradation of toluene. Chinese Chemical Letters, 2025, 36(4): 110137-. doi: 10.1016/j.cclet.2024.110137

    13. [13]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    14. [14]

      Hongyang LiYue LiuXiuwen WangHaijing YanGuimin WangDongxu WangYilong WangShuo YangYanqing Jiao . Morphology engineering and electronic structure remodeling of manganese-incorporated VN for boosting urea-assisted energy-saving hydrogen production. Chinese Chemical Letters, 2025, 36(6): 110042-. doi: 10.1016/j.cclet.2024.110042

    15. [15]

      Qingyun HuWei WangJunyuan LuHe ZhuQi LiuYang RenHong WangJian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344

    16. [16]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    17. [17]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    18. [18]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    19. [19]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    20. [20]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

Metrics
  • PDF Downloads(5)
  • Abstract views(199)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return