Citation: Zhao Lida, Yan Huan, Li Bing, Yan Ping, Guan Yulei. Theoretical Study on Intermolecular Interactions and Solvation Effects of the Heterocyclic Molecule Models of Asphaltene[J]. Chemistry, ;2018, 81(11): 1033-1043, 1032. shu

Theoretical Study on Intermolecular Interactions and Solvation Effects of the Heterocyclic Molecule Models of Asphaltene

  • Corresponding author: Zhao Lida, 15102988708@163.com
  • Received Date: 2 May 2018
    Accepted Date: 23 July 2018

Figures(5)

  • Asphaltene components in heavy oil are prone to coalesce to form clusters, which seriously affect the processing and utilization efficiency of heavy oil. However, there are few studies on the coagulation of asphaltene, and its mechanism is not clear. In this paper, theoretical calculations are used to study the intermolecular interaction and solvation effects of asphaltene heterocycle models. It provides some data and theoretical support for the study of the coagulation of heavy oil and the development of coagulation inhibitors. (1)By using the density functional theory (DFT), in the M062X/6-31G (d) level, we can get 11 kinds of stable configurations of binary mixture systems composed of the fragments of asphaltene-heterocyclic molecules (dibenzofuran, acridine and carbazole). The geometries of stable configurations, NBO (natural bonding orbital) charges, Mulliken overlap, interaction energies and molecular orbital energies are analyzed, and the most stable two configurations are obtained. (2)The modeling and theoretical calculation of the solvation effect of asphaltene macromolecules in 13 solvents were carried out in the B3LYP/6-31G (d) level with the SMD model. Through the analysis of the electrostatic solvation free energy(ΔGelec), non-electrostatic solvation free energy(ΔGnonelec) and solvation free energy(ΔGsolv), we can conclude that the key to the solubility of asphaltene lies in the size of the long-range electrostatic effect.
  • 加载中
    1. [1]

       

    2. [2]

      G J Moridis, T A Blasingame, C M Freeman. Spe Latin American & Caribbean Petroleum Engineering Conference. Society of Petroleum Engineers, 2010.

    3. [3]

       

    4. [4]

       

    5. [5]

      T F Yen. Energy Sources, 1974, 1(4):447~463. 

    6. [6]

      L Robson, M Hunter. J. Membr. Biol., 2005, 204(1):39~47. 

    7. [7]

      C J Robinson, G L Cook. Anal. Chem., 1969, 41(12):1548~1554. 

    8. [8]

       

    9. [9]

      J K Brown, W R Ladner. Fuel, 1960, 39(1):87~96.

    10. [10]

      Y Ruizmorales. J Phys. Chem. A, 2002, 106(46):11283~11308. 

    11. [11]

      I García-Cruz, J M Martínez-Magadán, P Guadarrama et al. J. Phys. Chem. A, 2003, 107(10):1597~1603. 

    12. [12]

      I García-Cruz, J M Martínez-Magadán, F Alvarez-Ramirez et al. J. Mol. Catal. A, 2005, 228(1~2):195-202. 

    13. [13]

       

    14. [14]

       

    15. [15]

       

    16. [16]

      Y D Sun, C H Yang, H Zhao et al. Energy Fuels, 2010, 24(9):5008~5011. 

    17. [17]

      S F R A ultanov, Y A Tileuberdi, Y K A Ongarbayev et al. Eurasian Chem. Technol. J., 2012, 15(1):77~81. 

    18. [18]

       

    19. [19]

      H Groenzin, O C Mullins. Energy Fuels, 2000, 14(3):677~684. 

    20. [20]

       

    21. [21]

       

    22. [22]

       

    23. [23]

       

    24. [24]

       

    25. [25]

      T Takanohashi, S Sato, R P Tanaka. Liq. Fuels Technol., 2003, 21(3~4):491-505.

    26. [26]

      E Rogel. Colloids Surf. A, 1995, 104(1):85~93. 

    27. [27]

      E Rogel. Energy Fuels, 2000, 14(3):566~574. 

    28. [28]

      E G Hohenstein, S T Chill, C D Sherrill. J. Chem. Theory Comput., 2008, 4(12):1996~2000. 

    29. [29]

       

    30. [30]

       

    31. [31]

    32. [32]

    33. [33]

      A D Becke. J. Chem. Phys., 1993, 98(2):1372~1377. 

    34. [34]

      M J Frisch, G W Trucks, H B Schlegel et al. Gaussian 09, Gaussian, Inc. 2009.

    35. [35]

      I Mayer, P Salvador. Chem. Phys. Lett., 2004, 383(3):368~375.

    36. [36]

      A Grechnev, R Ahuja, O Eriksson. J. Phys.:Condens. Matter, 2005, 15(45):7751~7761.

    37. [37]

      J Oláh, F Blockhuys, T Veszprémi et al. Eur. J. Inorg. Chem., 2006, 2006(1):69~77.

    38. [38]

       

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    5. [5]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    6. [6]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    7. [7]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    8. [8]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    9. [9]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    10. [10]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    11. [11]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    12. [12]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    13. [13]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    14. [14]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    15. [15]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    16. [16]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    17. [17]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    18. [18]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    19. [19]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    20. [20]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

Metrics
  • PDF Downloads(7)
  • Abstract views(593)
  • HTML views(209)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return