Citation: ZHANG Huan-ling, WANG Guo-wei, SHAN Hong-hong, LI Chun-yi. Propane dehydrogenation over NiSn-based catalysts[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(12): 1529-1536. shu

Propane dehydrogenation over NiSn-based catalysts

  • Corresponding author: WANG Guo-wei, wangguowei@upc.edu.cn
  • Received Date: 7 July 2017
    Revised Date: 30 September 2017

    Fund Project: The project was supported by the National Natural Science Foundation of China(21606257, U1362201)the National Natural Science Foundation of China 21606257the National Natural Science Foundation of China U1362201

Figures(7)

  • In this paper, we studied the effects of supports, such as SiO2, MgO, Al2O3 and MgAl2O4, on the performance of supported NiSn catalyst for propane dehydrogenation. NH3 temperature-programmed desorption, H2 temperature-programmed reduction were applied for the characterization of the catalysts. The results show that SiO2 with large specific surface area and large pore size can achieve good contact between catalyst and reactants, leading to a high content of Ni2.67Sn2 alloy and a reduced diffusion resistance, In addition, their weak acid improve dehydrogenation activity and propene selectivity.
  • 加载中
    1. [1]

      SHEN Ju-hua. Development of propene production at home and abroad[J]. Chem Technol Market, 2005,28(11):15-19.  

    2. [2]

      ZHANG Y W, ZHOU Y M, SHI J J, ZHOU S J, ZHANG Z W, ZHANG S C, GUO M G. Propane dehydrogenation over PtSnNa/La-doped Al2O3 catalyst: Effect of La content[J]. Fuel Process Technol, 2013,111(3):94-104.  

    3. [3]

      ZANGENEH F T, SAHEBDELFAR S, BAHMANI M. Propane dehydrogenation over a commercial Pt-Sn/A12O3 catalyst for isobutane dehydrogenation: Optimization of reaction conditions[J]. Chin J Chem Eng, 2013,21(7):730-735. doi: 10.1016/S1004-9541(13)60537-6

    4. [4]

      CHEN M, XU J, CAO Y, HE H Y, FAN K N, ZHUANG J H. Dehydrogenation of propane over In2O3-Al2O3 mixed oxide in the presence of carbon dioxide[J]. J Catal, 2010,272(1):101-108. doi: 10.1016/j.jcat.2010.03.007

    5. [5]

      BAI L Y, ZHOU Y M, ZHANG Y W, LIU H, SHENG X L, XUE M W. Influence of the competitive adsorbates on the catalytic properties of PtSnNaMg/ZSM-5 catalysts for propane dehydrogenation[J]. Ind Eng Chem Res, 2011,50(8):4345-4350. doi: 10.1021/ie1018639

    6. [6]

      CHEN Jian-jiu, SHI Hai-ying, WANG Yong. Propane dehydrogenation process technology[J]. Prog Fine Petrochem, 2000,1(12):23-28. doi: 10.3969/j.issn.1009-8348.2000.12.007

    7. [7]

      SAHEBDELFAR S, RAVANCHI M T, ZANGENEH F T, MEHRAZMA S, RAJABI S. Kinetic study of propane dehydrogenation and side reactions over Pt-Sn/Al2O3 catalyst[J]. Chem Eng Res Des, 2012,90(8):1090-1097. doi: 10.1016/j.cherd.2011.11.004

    8. [8]

      ZHOU Hong-zhong. Current situation and development trend of propene market at home and abroad[J]. Chem Technol Eco, 2004,22(9):28-31.  

    9. [9]

      ZHANG Yi-wei, ZHOU Yu-ming, QIU An-ding, WANG Yu, XU Yi, WU Pei-cheng. The effects of Na on the performance of PtSn/ZSM-5 catalyzed propane dehydrogenation[J]. Acta Phys-Chim Sin, 2006,22(6):672-678.  

    10. [10]

      MA Yan-ping, YANG Ru-xin, ZHAO Yan. Propane catalytic dehydrogenation production technology and industrial application[J]. Guangdong Chem Ind, 2012,39(7):87-87.  

    11. [11]

      WANG Hong-qiu, ZHENG Yi-dan. Advances in propane dehydrogenation to produce propene[J]. Petrochem Technol, 2011,8(2):63-66.  

    12. [12]

      ZHU Yi-cai. Technical economic analysis of propane dehydrogenation[J]. Petroleum Petrochem Today, 2012,20(8):36-42.  

    13. [13]

      GAI Xi-kun, TIAN Yuan-yu, XIA Dao-hong. Analysis of propane catalytic dehydrogenation to propene[J]. Pet Refin Eng, 2010,40(12):27-32. doi: 10.3969/j.issn.1002-106X.2010.12.007

    14. [14]

      GORRIZ O F, CADUS L E. Supported chromium oxide calatysts using metal carboxylate complexes: dehydrogenation of propane[J]. Appl Catal A: Gen, 1999,180(1/2):247-260.  

    15. [15]

      CIMINO A, CORDISHI D, DE ROSSI S, FERRARIS G, GAZZOLI D, INDOVINA V, VALIGI M. Studies on chromia zirconia catalysts Ⅲ. Propene hydrogenation[J]. J Catal, 1991,127(2):777-787. doi: 10.1016/0021-9517(91)90198-D

    16. [16]

      TAN Xiao-lin, MA Bo, ZHANG Xi-wen, ZHANG Hai-juan, LI Jiang-hong. Research progress of Cr-based propane dehydrogenation catalyst[J]. Prog Chem, 2000,29(1):51-57.  

    17. [17]

      QIU An-ding, FAN Yi-ning. Effect of adding tin component on propane dehydrogenation of Pt/ZSM-5 catalyst[J]. J Fuel Chem Technol, 2008,36(5):637-640.  

    18. [18]

      DONG Wen-sheng, WANG Xin-kui, PENG Shao-yi. Effect of Ca on structure and propane dehydrogenation of PtSn/MgAl2O4[J]. J Mol Catal, 1998,12(3):183-188.  

    19. [19]

      SUN Yi-fei, LI Guang-chao, PAN Xin-di, HUANG Chuan-jing, WENG Wei-zheng, WAN Hui-lin. Oxidative dehydrogenation of propane to propene on Ni-Co oxide catalyst supported on mesoporous alumina[J]. Acta Phys-Chim Sin, 2012,28(9):2135-2140.  

    20. [20]

      XU Ai-jiu, LIN Qin, ZHAO Ri-ge-tu, ZHANG Yu. Propane dehydrogenation of NiO/blast furnace slag catalyst[J]. Rare Metal Mater Eng, 2009,45(s1):99-102.

    21. [21]

      LIANG Xu, LIU Yan-xia, JIANG Yuan-li, WEI Ling-chao. Preparation and characterization of silicon modified alumina and nickel base catalystⅡ[J]. Ind Catal, 2016,24(9):41-44.  

    22. [22]

      WANG G W, LI C Y, SHAN H H. Highly efficient metal sulfide catalysts for selective dehydrogenation of isobutane to isobutene[J]. ACS Catal, 2014,4(4):1139-1143. doi: 10.1021/cs5000944

    23. [23]

      WANG G W, MENG Z, LIU J W, LI C Y, SHAN H H. Promoting effect of sulfur addition on the catalytic performance of Ni/MgAl2O4 catalysts for isobutane dehydrogenation[J]. ACS Catal, 2013,3(12):2992-3001. doi: 10.1021/cs400705p

    24. [24]

      WANG G W, WANG H R, ZHANG H L, ZHU Q Q, LI C Y, SHAN H H. Highly selective and stable NiSn/SiO2 catalyst for isobutane dehydrogenation: Effects of Sn addition[J]. ChemCatChem, 2016,8(19):3137-3145. doi: 10.1002/cctc.v8.19

    25. [25]

      MIAO Jian-wen, SONG Guo-hua, FAN Yi-ning. Oxidative dehydrogenation of propane oxidation catalyzed by silica supported vanadium oxide with different channel structure[J]. Chin J Catal, 2009,30(11):1143-1149. doi: 10.3321/j.issn:0253-9837.2009.11.013

    26. [26]

      ZHANG Y W, ZHOU Y M, SHI J J, ZHOU S J, SHENG X L, ZHANG Z W, XIANG S M. Comparative study of bimetallic Pt-Sn catalysts supported on different supports for propane dehydrogenation[J]. J Mol Catal A: Chem, 2014,381(1):138-147.  

    27. [27]

      HE S B, SUN C H, DU H H, BAI X H, WANG B. Effect of carbon addition on the Pt-Sn/γ-Al2O3 catalyst for long chain paraffin dehydrogenation to olefin[J]. Chem Eng J, 2008,141(1):284-289.  

    28. [28]

      LAI Y L, HE S B, LI X R, SUN C L, SEAHAN K. Dehydrogenation of n-dodecane over Pt-Sn/Mg-Al-O catalysts: Investigating the catalyst performance while monitoring the products[J]. Appl Catal A: Gen, 2014,469(17):74-80.  

    29. [29]

      HE S B, SUN C L, YANG X, WANG B, BAI X H, BAI Z W. Characterization of coke deposited on spent catalysts for long-chain-paraffin dehydrogenation[J]. Chem Eng J, 2010,163(3):389-394. doi: 10.1016/j.cej.2010.07.024

    30. [30]

      BRUSCHI L, MISTURE G. Adsorption within and on regularly patterned substrates[J]. J Low Temp Phys, 2009,157(3-4):206-220. doi: 10.1007/s10909-009-9913-z

    31. [31]

      MISTURE G, BRUSCHI L, LEE W. Adsorption on highly ordered porous alumina[J]. J Low Temp Phys, 2016,185(1-2):138-160. doi: 10.1007/s10909-016-1619-4

    32. [32]

      LI X, MENG F H, CHENG Y, GAO Y, LI Z. Catalytic methanation in a slurry-bed reactor over Ni/SiO2 catalysts: Improvement by ZrO2 and β-cyclodextrin addition[J]. React Kinet Mech Catal, 2017,122(1):525-538. doi: 10.1007/s11144-017-1213-z

    33. [33]

      WANG H R, WANG H, LI L Y, LI C Y. Nature of active tin species and promoting effect of nickle in silica supported tin oxide for dehydrogenation of propane[J]. Appl Surf Sc, 2017,407:456-452. doi: 10.1016/j.apsusc.2017.02.216

    34. [34]

      QIU An-ding, LI En-xia, FAN Yi-ning. Effect of carrier composition on dehydrogenation of propane over supported PtSn/ZSM-5 catalysts[J]. Chin J Catal, 2007,28(11):970-974. doi: 10.3321/j.issn:0253-9837.2007.11.009

    35. [35]

      BALLARINI A D, ZGOLICZ P, VILELLA I M J, MIGUEL S R D, CASTRO A A, SCELZA O A. n-Butane dehydrogenation on Pt, PtSn and PtGe supported on γ-Al2O3 deposited on spheres of α-Al2O3 by washcoating[J]. Appl Catal A: Gen, 2010,381(1-2):83-91. doi: 10.1016/j.apcata.2010.03.053

    36. [36]

      XU Jun-ke, LI Zhao-jing, WANG Ji-hui, ZHOU Wei, MA Jian-xin. Characterization and analysis of carbon deposition on the surface of Ni/Al2O3 by methane dry reforming catalyst[J]. Acta Phys-Chim Sin, 2009,25(2):253-260.  

    37. [37]

      KOBAYASHI Y, HORIGUCHI J, KOBAYASHI S, YAMAZAKI Y, OMATA K, NAGAO D, KONNO M, YAMADA M. Effect of NiO content in mesoporous NiO-Al2O3 catalysts for high pressure partial oxidation of methane to synga[J]. Appl Catal A: Gen, 2011,395(1-2):129-137. doi: 10.1016/j.apcata.2011.01.034

    38. [38]

      DONG Wen-sheng, WANG Xin-kui, WANG Hao-jing, PENG Shao-yi. The study of TPR and H2-TPD over Pt-Sn/MgAl2O4catalyst[J]. Chin J Catal, 1999,20(5):577-580.  

    39. [39]

      ZHENG Liang-ke, XU Cheng-hua, LIU Jian-ying, LIU Sheng-yu. Catalytic hydrogenation of furfural to liquid phase by catalytic Cu-Ni catalyst based on hydrotalcite-like precursor[J]. Fine Catal, 2010,27(11):1078-1085.  

    40. [40]

      YANG Ya-xian, QIN Da-wei, XIE Hui. Study on preparation of syngas from methane reforming with MgO modified Ni/γ-Al2O3 catalyst[J]. Nat Gas Chem Ind, 2012,37(6):40-43.  

    41. [41]

      SUN Meng, YANG Qi, LU Wen, FAN Zhe-yong, FEI Jin-hua, ZHENG Xiao-ming, WHEELOCK T D. Effect of calcination temperature on the structure of Ni/MgO catalyst and its effect on the performance of catalyst in toluene reforming of toluene[J]. Chin J Catal, 2012,33(9):1508-1516.  

    42. [42]

      KUMAR M, ABERUAGBA F, GUPTA J K, RAWAT K S, SHARMA L D, MURALI DHARA G. Temperature-programmed reduction and acidic properties of molybdenum supported on MgO-Al2O3 and their correlation with catalytic activity[J]. J Mol Catal A: Chem, 2004,213(2):217-223. doi: 10.1016/j.molcata.2003.12.005

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    3. [3]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    4. [4]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    5. [5]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    6. [6]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    7. [7]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    8. [8]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    12. [12]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    13. [13]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    14. [14]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    15. [15]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    16. [16]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    17. [17]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

Metrics
  • PDF Downloads(6)
  • Abstract views(2129)
  • HTML views(884)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return