Citation: WU Jian-bing, SHI Rui-ping, QIN Zhang-feng, LIU Huan, LI Zhi-kai, ZHU Hua-qing, ZHAO Yong-xiang, WANG Jian-guo. Selective oxidation of methanol to methyl formate over bimetallic Au-Pd nanoparticles supported on SiO2[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(7): 780-790. shu

Selective oxidation of methanol to methyl formate over bimetallic Au-Pd nanoparticles supported on SiO2

  • Corresponding author: QIN Zhang-feng, qzhf@sxicc.ac.cn WANG Jian-guo, iccjgw@sxicc.ac.cn
  • Received Date: 2 March 2019
    Revised Date: 5 April 2019

    Fund Project: the Strategic Program of Coal-based Technology of Shanxi Province MQ2014-10the National Key R & D Program of China 2018YFB0604804the National Natural Science Foundation of China 21703127the Strategic Program of Coal-based Technology of Shanxi Province MQ2014-11The project was supported by the National Key R & D Program of China (2018YFB0604804), the National Natural Science Foundation of China (21603254, 21703127, 21703276), the Strategic Program of Coal-based Technology of Shanxi Province (MQ2014-11, MQ2014-10), the Key Research Program of the Chinese Academy of Sciences (KFZD-SW-410)the Key Research Program of the Chinese Academy of Sciences KFZD-SW-410the National Natural Science Foundation of China 21603254the National Natural Science Foundation of China 21703276

Figures(6)

  • Selective oxidation of methanol to methyl formate (MF) is one of the most attractive processes to get valuable methanol-downstream products, where the supported Au and Pd catalysts were proved rather effective at low temperature. To search for highly active, regenerable and practical catalysts as well as to reveal the synergy of Au-Pd and reaction mechanism for the methanol oxidation, a series of silica supported Au-Pd nanoparticles (Au-Pd/SiO2) were prepared and their catalytic performance in the oxidation of methanol to MF with molecular oxygen was investigated in this work. The results indicate that the Au2-Pd1/SiO2 catalyst with an Au+Pd loading of only 0.6% and a Au/Pd mass ratio of 2 exhibits excellent performance in the methanol oxidation with oxygen; the conversion of methanol over Au2-Pd1/SiO2 reaches 57.0% at 130℃, with a selectivity of 72.7% to MF. Various characterization results illustrate that the Au-Pd bimetallic nanoparticles (2-4 nm) are highly dispersed on the silica surface, inclined to take a twinned structure and present the (111) planes, which may contribute to the high activity of Au-Pd/SiO2 in the oxidation of methanol to MF. A possible reaction mechanism was proposed on the basis of DRIFTS results:methanol was first activated by surface oxygen on the interface of Au-Pd nanoparticles, forming the chemisorbed methoxy species; the methoxy species was then deprotonated to adsorbed formaldehyde species, which reacted with another methoxy species, producing MF by nucleophilic attack and subsequent β-H elimination.
  • 加载中
    1. [1]

      GEÂRARD E, GOÈTZ H, PELLEGRINI S, CASTANET Y, MORTREUX A. Epoxide-tertiary amine combinations as efficient catalysts for methanol carbonylation into methyl formate in the presence of carbon dioxide[J]. Appl Catal A:Gen, 1998,170:297-306. doi: 10.1016/S0926-860X(98)00060-X

    2. [2]

      LI N, WANG S B, SUN YH, LI S G. First principles studies on the selectivity of dimethoxymethane and methyl formate in methanol oxidation over V2O5/TiO2-based catalysts[J]. Phys Chem Chem Phys, 2017,19:19393-19406. doi: 10.1039/C7CP02326J

    3. [3]

      KAICHEV V V, POPOVA G YA, CHESALOV YU A, SARAEV A A, ZEMLYANOV D Y, BELOSHAPKIN S A, KNOP-GERICKE A, SCHLÖGL R, ANDRUSHKEVICH T V, BUKHTIYAROV V I. Selective oxidation of methanol to form dimethoxymethane and methyl formate over a monolayer V2O5/TiO2 catalyst[J]. J Catal, 2014,311:59-70. doi: 10.1016/j.jcat.2013.10.026

    4. [4]

      ZHAO Y B, QIN Z F, WANG G F, DONG M, HUANG L C, WU Z W, FAN W B, WANG J G. Catalytic performance of V2O5/ZrO2-Al2O3 for methanol oxidation[J]. Fuel, 2013,104:22-27. doi: 10.1016/j.fuel.2010.03.008

    5. [5]

      LI W Z, LIU H C, IGLESIA E. Structures and properties of zirconia-supported ruthenium oxide catalysts for the selective oxidation of methanol to methyl formate[J]. J Phys Chem B, 2006,110:23337-23342. doi: 10.1021/jp0648689

    6. [6]

      AI M. The production of methyl formate by the vapor-phase oxidation of methanol[J]. J Catal, 1982,77:279-288. doi: 10.1016/0021-9517(82)90168-3

    7. [7]

      LIU G B, ZHANG Q D, HAN Y Z, TSUBAKI N, TAN Y S. Low-temperature oxidation of dimethyl ether to methyl formate with high selectivity over MoO3-SnO2 catalysts[J]. J Fuel Chem Technol, 2013,41(2):223-227. doi: 10.1016/S1872-5813(13)60014-6

    8. [8]

      LIU J L, ZHAN E S, CAI W J, LI J, SHEN W J. Methanol selective oxidation to methyl formate over ReOx/CeO2 catalysts[J]. Catal Lett, 2008,120(3/4):274-280.

    9. [9]

      LIU H C, IGLESIA E. Effects of support on bifunctional methanol oxidation pathways catalyzed by polyoxometallate Keggin clusters[J]. J Catal, 2004,223(1):16l-169.  

    10. [10]

      WOJCIESZAK R, GHAZZAL M N, GAIGNEAUX E M, RUIZ P. Oxidation of methanol to methyl formate over supported Pd nanoparticles:Insights into the reaction mechanism at low temperature[J]. Catal Sci Technol, 2014,4(9):3298-3305. doi: 10.1039/C4CY00531G

    11. [11]

      WANG R Y, WU Z W, CHEN C M, QIN Z F, ZHU H Q, WANG G F, WANG H, WU C M, DONG W W, FAN W B, WANG J G. Graphene-supported Au-Pd bimetallic nanoparticles with excellent catalytic performance in selective oxidation of methanol to methyl formate[J]. Chem Commun, 2013,49(74):8250-8252. doi: 10.1039/c3cc43948h

    12. [12]

      WHITING G T, KONDRAT S A, HAMMOND C, DIMITRATOS N, HE Q, MORGAN D J, DUMMER N F, BARTLEY J K, KIELY C J, TAYLOR S H, HUTCHINGS G J. Methyl formate formation from methanol oxidation using supported gold-palladium nanoparticles[J]. ACS Catal, 2015,5:637-644. doi: 10.1021/cs501728r

    13. [13]

      CHEN Q B, LUO L T. Effects of reductant on catalytic performance of Au-Pd/CeO2 catalysts for partial oxidation of methanol[J]. J Fuel Chem Technol, 2008,36(3):332-337.  

    14. [14]

      BAKER T A, LIU X, FRIEND C M. The mystery of gold's chemical activity:Local bonding, morphology and reactivity of atomic oxygen[J]. Phys Chem Chem Phys, 2010,13(1):34-46.

    15. [15]

      ZHANG Q F, LI Y K, LI Z, LI C, YE L, YONG L. Structured nanoporous-gold/Al-fiber:Galvanic deposition preparation and reactivity for the oxidative coupling of methanol to methyl formate[J]. Green Chem, 2014,16(6):2992-2996. doi: 10.1039/C3GC42561D

    16. [16]

      WITTSTOCK A, ZIELASEK V, BIENER J, FRIEND C M, BÄUMER M. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature[J]. Science, 2010,327(5963):319-322. doi: 10.1126/science.1183591

    17. [17]

      LU D, ZHANG Y, LIN S, WANG L, WANG C. Synthesis of Pt-Au bimetallic nanoparticles on graphene-carbon nanotube hybrid nanomaterials for nonenzymatic hydrogen peroxide sensor[J]. Talanta, 2013,112(15):111-116.

    18. [18]

      WANG R Y, WU Z W, WANG G F, QIN Z F, CHEN C M, DONG M, ZHU H Q, FAN W B, WANG J G. Highly active Au-Pd nanoparticles supported on three-dimensional graphene-carbon nanotube hybrid for selective oxidation of methanol to methyl formate[J]. RSC Adv, 2015,5(56):44835-44839. doi: 10.1039/C5RA06025G

    19. [19]

      XU J, WHITE T, LI P, HE C H, YU J G, YUAN W K, HAN Y F. Biphasic Pd-Au alloy catalyst for low-temperature CO oxidation[J]. J Am Chem Soc, 2010,132(30):10398-10406. doi: 10.1021/ja102617r

    20. [20]

      TAN L F, CHEN D, LIU H Y, TANG F Q. A silica nanorattle with a mesoporous shell:An ideal nanoreactor for the preparation of tunable gold cores[J]. Adv Mater, 2010,22(43):4885-4889. doi: 10.1002/adma.201002277

    21. [21]

      WANG A Q, CHANG C M, MOU C Y. Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation[J]. J Phys Chem B, 2005,109(40):18860-18867. doi: 10.1021/jp051530q

    22. [22]

      LU C L, PRASAD K S, WU H L, HO J A, HUANG M H. Au nanocube-directed fabrication of Au-Pd core-shell nanocrystals with tetrahexahedral, concave octahedral, and octahedral structures and their electrocatalytic activity[J]. J Am Chem Soc, 2010,132(41):14546-14553. doi: 10.1021/ja105401p

    23. [23]

      XU J G, WILSON A R, RATHMELL A R, HOWE J, CHI M F, WILEY B J. Synthesis and catalytic properties of Au-Pd nanoflowers[J]. Acs Nano, 2011,5(8):6119-6127. doi: 10.1021/nn201161m

    24. [24]

      BULUSHEV D A, YURANOV I, SUVOROVA E I, BUFFAT P A, KIWIMINSKER L. Highly dispersed gold on activated carbon fibers for low-temperature CO oxidation[J]. J Catal, 2004,224(1):8-17.  

    25. [25]

      LIU R, YU Y, YOSHIDA K, LI G, JIANG H, ZHANG M, ZHAO F, FUJITA S, ARAI M. Physically and chemically mixed TiO2-supported Pd and Au catalysts:Unexpected synergistic effects on selective hydrogenation of citral in supercritical CO2[J]. J Catal, 2010,269(1):191-200.

    26. [26]

      PRITCHARD J, KESAVAN L, PICCININI M, HE Q, TIRUVALAM R, DIMITRATOS N, LOPEZ-SANCHEZ J A, CARLEY A F, EDWARDS J K, KIELY C J, HUTCHINGS G J. Direct synthesis of hydrogen peroxide and benzyl alcohol oxidation using Au-Pd catalysts prepared by sol immobilization[J]. Langmuir, 2010,26(21):16568-16577. doi: 10.1021/la101597q

    27. [27]

      HSU C, HUANG C, HAO Y, LIU F. Au/Pd core-shell nanoparticles for enhanced electrocatalytic activity and durability[J]. Electrochem Commun, 2012,23(1):133-136.  

    28. [28]

      GUO X N, BRAULT P, ZHI G J, CAILLARD A, JIN G Q, COUTANCEAU C, BARANTON S, GUO X Y. Synergistic combination of plasma sputtered Pd-Au bimetallic nanoparticles for catalytic methane combustion[J]. J Phys Chem C, 2011,115(22):11240-11246. doi: 10.1021/jp203351p

    29. [29]

      ZHANG G J, WANG Y E, WANG X, CHEN Y, ZHOU Y, TANG Y, LU L, BAO J, LU T. Preparation of Pd-Au/C catalysts with different alloying degree and their electrocatalytic performance for formic acid oxidation[J]. Appl Catal B:Environ, 2011,102(3):614-619.  

    30. [30]

      CZELEJ K, CWIEKA K, COLMENARES J C, KURZYDLOWSKI K J, XU Y. Toward a comprehensive understanding of enhanced photocatalytic activity of the bimetallic PdAu/TiO2 catalyst for selective oxidation of methanol to methyl formate[J]. ACS Appl Mater Interfaces, 2017,9:31825-31833. doi: 10.1021/acsami.7b08158

    31. [31]

      KOMINAMI H, SUGAHARA H, HASHIMOTO K. Photocatalytic selective oxidation of methanol to methyl formate in gas phase over titanium(Ⅳ) oxide in a flow-type reactor[J]. Catal Commun, 2010,11(5):426-429. doi: 10.1016/j.catcom.2009.11.014

    32. [32]

      WOJCIESZAK R, MATEOS-BLANCO R, HAUWAERT D, CARRAZAN S R G, GAIGNEAUX E AND, RUIZ P. Influence of the preparation method on catalytic properties of Pd/TiO2 catalysts in the reaction of partial oxidation of methanol[J]. Curr Catal, 2013,2:27-34. doi: 10.2174/2211544711302010006

    33. [33]

      YAN C, DONG Q N, REN J, SUN Y H. Studies on mechanism of methanol decomposition over Pd/CeO2 catalyst[J]. Chem J Chin Univ, 2002,23(12):2329-2331.  

    34. [34]

      BONURA G, CORDARO M, SPADARO L, CANNILLA C, ARENA F, FRUSTERI F. Hybrid Cu-ZnO-ZrO2/H-ZSM-5 system for the direct synthesis of DME by CO2 hydrogenation[J]. Appl Catal B:Environ, 2013,140-141:16-24. doi: 10.1016/j.apcatb.2013.03.048

    35. [35]

      HANAOKA T, HATSUTA T, TAGO T, KISHIDAAND M, WAKABAYASHI K. Control of the rhodium particle size of the silica-supported catalysts by using microemulsion[J]. Appl Catal A:Gen, 2000,190(1/2):291-296.

    36. [36]

      LOCHAŘ V. FT-IR study of methanol, formaldehyde and methyl formate adsorption on the surface of Mo/Sn oxide catalyst[J]. Appl Catal A:Gen, 2006,309(1):33-36. doi: 10.1016/j.apcata.2006.04.030

    37. [37]

      LOCHAŘ V, MACHEK J, TICHY J. Mechanism of selective oxidation of methanol over stannic oxide-molybdenum oxide catalyst[J]. Appl Catal A:Gen, 2002,228(1):95-101.

    38. [38]

      BURCHAM L J, BADLANI M, WACHS I E. The origin of the ligand effect in metal oxide catalysts:Novel fixed-bed in situ infrared and kinetic studies during methanol oxidation[J]. J Catal, 2001,203(1):104-121. doi: 10.1006/jcat.2001.3312

    39. [39]

      LIU X Y, MADIX R J, FRIEND C M. Unraveling molecular transformations on surfaces:A critical comparison of oxidation reactions on coinage metals[J]. Chem Soc Rev, 2008,37(10):2243-2261. doi: 10.1039/b800309m

    40. [40]

      XU B, LIU X, HAUBRICH J, HAUBRICH J, FRIEND C M. Vapour-phase gold-surface-mediated coupling of aldehydes with methanol[J]. Nat Chem, 2010,2(1):61-65.  

  • 加载中
    1. [1]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    2. [2]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

    3. [3]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    4. [4]

      Xiangqian CaoChenkai YangXiaodong ZhuMengxin ZhaoYilin YanZhengnan HuangJinming CaiJingming ZhuangShengzhou LiWei LiBing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199

    5. [5]

      Jiaxu WangJinxie ZhangXiuping WangJingying WangLina ChenJiahui CaoWei CaoSiyu LiangPing LuanKe ZhengXiao-Kun OuyangLi GaoXiaowen OuFan ZhangMeitong OuLin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697

    6. [6]

      Jichun LiZhengren WangYu DengHongxiu YuYonghui DengXiaowei ChengKaiping Yuan . Construction of mesoporous silica-implanted tungsten oxides for selective acetone gas sensing. Chinese Chemical Letters, 2024, 35(11): 110111-. doi: 10.1016/j.cclet.2024.110111

    7. [7]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

    8. [8]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    9. [9]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    10. [10]

      Siting CaiXiang ChenShuli WangXinqin LiaoZhong ChenYue Lin . Silica coating of quantum dots and their applications in optoelectronic fields. Chinese Chemical Letters, 2025, 36(6): 110798-. doi: 10.1016/j.cclet.2024.110798

    11. [11]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    12. [12]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    13. [13]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    14. [14]

      Mengwei YeQingqing XuHuanhuan JianYiduo DingWenpeng ZhaoChenxiao WangJunya LuShuaipeng FengSiling WangQinfu Zhao . Recent trends of biodegradable mesoporous silica based nanoplatforms for enhanced tumor theranostics. Chinese Chemical Letters, 2025, 36(6): 110221-. doi: 10.1016/j.cclet.2024.110221

    15. [15]

      Shuai ZhuMingjie ChenHaichao ShenHanming DingWenbo LiJunliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879

    16. [16]

      Yunqiang LiYongxian HuangSinuo LiHe HuangZhiwei Jiao . Elaborating azaaryl alkanes enabled by photoredox/palladium dual catalyzed dialkylation of azaaryl alkenes. Chinese Chemical Letters, 2025, 36(4): 110051-. doi: 10.1016/j.cclet.2024.110051

    17. [17]

      Zhao GuYunhui YangSong YeCongyang Wang . 2,3-Arylacylation of allenes through synergetic catalysis of palladium and N-heterocyclic carbene. Chinese Chemical Letters, 2025, 36(5): 110334-. doi: 10.1016/j.cclet.2024.110334

    18. [18]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    19. [19]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    20. [20]

      Fenglin WangChengwei KuangZhicheng ZhengDan WuHao WanGen ChenNing ZhangXiaohe LiuRenzhi Ma . Noble metal clusters substitution in porous Ni substrate renders high mass-specific activities toward oxygen evolution reaction and methanol oxidation reaction. Chinese Chemical Letters, 2025, 36(6): 109989-. doi: 10.1016/j.cclet.2024.109989

Metrics
  • PDF Downloads(3)
  • Abstract views(490)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return