Citation: HE Dan, LIU Lai-shuan, REN Jun, HU Tuo-ping. Catalytic combustion of volatile organic compounds over CuO-CeO2 supported on SiO2-Al2O3 modified glass-fiber honeycomb[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(3): 354-361. shu

Catalytic combustion of volatile organic compounds over CuO-CeO2 supported on SiO2-Al2O3 modified glass-fiber honeycomb

  • Corresponding author: LIU Lai-shuan, liulaishuan@nuc.edu.cn
  • Received Date: 14 November 2016
    Revised Date: 23 January 2017

    Fund Project: Foundation of Shanxi Province project 2009011011-4International Scientific and Technological Cooperation Projects of Shanxi Province 2015081043

Figures(8)

  • CuO-CeO2 monolithic catalysts supported on SiO2-Al2O3 modified glass-fiber honeycomb were prepared via co-impregnation method and their performance in the oxidation of volatile organic compounds (VOCs) such as ethyl acetate, isopropanol and toluene was evaluated. Various techniques such as N2 sorption, X-ray powder diffraction (XRD), hydrogen-temperature programmed reduction (H2-TPR), ammonia-temperature programmed desorption (NH3-TPD) and chemisorption of VOCs were employed to characterize the catalysts. The results show that the copper oxide species are highly dispersed on the CuO-CeO2 based catalysts; moreover, the size of CeO2 nanoparticles increases with the decrease of copper/ceria molar ratio. The addition of ceria oxide can evidently increase the amount of total acid sites, especially the Lewis ones, which can enhance the adsorption capacity of ethyl acetate and isopropanaol and promote the oxidation of ethyl acetate and isopropanaol. In the case of toluene combustion, the addition of large amount of CeO2 may decrease the reducibility and oxygen activation capability; as a result, it contributes little to the adsorption of toluene, resulting in a low activity in the oxidation of toluene. The catalytic activity is related both to the reactivity of surface oxygen and to the adsorption capacity of the catalyst towards VOC molecules, which are determined by the complex interactions among copper, cerium oxide and the support.
  • 加载中
    1. [1]

      LIOTTA L F. Catalytic oxidation of volatile organic compounds on supported noble metals[J]. Appl Catal B:Environ, 2010,100(3/4):403-412.  

    2. [2]

      LI W H, GONG H. Recent progress in the removal of volatile organic compounds by catalytic combustion[J]. Acta Phys Chim Sin, 2010,26(4):885-894.  

    3. [3]

      SAQER S M, KONDARIDES D I, VERYKIOS X E. Catalytic oxidation of toluene over binary mixtures of copper, manganese and cerium oxides supported on Al2O3[J]. Appl Catal B:Environ, 2011,103(3/4):275-286.  

    4. [4]

      KIM S C, SHIM W G. Catalytic combustion of VOCs over a series of manganese oxide catalysts[J]. Appl Catal B:Environ, 2010,98(3/4):180-185.  

    5. [5]

      LARSSON P O, ANDERSSON A, WALLENBERG L R, SVENSSONY B. Combustion of CO and toluene; Characterisation of copper oxide supported on titania and activity comparisons with supported cobalt, iron, and manganese oxide[J]. J Catal, 1996,163(2):279-293. doi: 10.1006/jcat.1996.0329

    6. [6]

      BIAŁAS A, KONDRATOWICZ T, DROZDEK M, KU'STROWSKI P. Catalytic combustion of toluene over copper oxide deposited on two types of yttria-stabilized zirconia[J]. Catal Today, 2015,257(1):144-149.  

    7. [7]

      KIM S C. The catalytic oxidation of aromatic hydrocarbons over supported metal oxide[J]. J Hazard Mater, 2002,91(1/3):285-299.  

    8. [8]

      LIU S, WU X D, WENG D, RAN R. Ceria-based catalysts for soot oxidation:A review[J]. J Rare Earth, 2015,33(6):567-590. doi: 10.1016/S1002-0721(14)60457-9

    9. [9]

      DELIMARIS D, IOANNIDES T. VOC oxidation over CuO-CeO2 catalysts prepared by a combustion method[J]. Appl Catal B:Environ, 2009,89(1/2):295-302.  

    10. [10]

      TSONCHEVA T, ISSA G, BLASCO T, DIMITROV M, POPOVA M, HERNÁNDEZ S, KOVACHEVA D, ATANASOVA G, LÓPEZ NIETO J M. Catalytic VOCs elimination over copper and cerium oxide modified mesoporous SBA-15 silica[J]. Appl Catal A:Gen, 2013,453:1-12. doi: 10.1016/j.apcata.2012.12.007

    11. [11]

      LOPATIN S, MIKENIN P, PISAREV D, BARANOV D, ZAZHIGALOV S, ZAGORUIKO A. Pressure drop and mass transfer in the structured cartridges with fiber-glass catalyst[J]. Chem Eng J, 2015,282:58-65. doi: 10.1016/j.cej.2015.02.026

    12. [12]

      PEI T J, LIU L S, XU L K, LI Y, HE D. A novel glass fiber catalyst for the catalytic combustion of ethyl acetate[J]. Catal Commun, 2016,74:19-23. doi: 10.1016/j.catcom.2015.10.030

    13. [13]

      LIU L S, LIU Z Y, YANG J L, HUANG Z G, LIU Z H. Effect of preparation conditions on the properties of a coal-derived activated carbon honeycomb monolith[J]. Carbon, 2007,45(14):2836-2842. doi: 10.1016/j.carbon.2007.08.006

    14. [14]

      ANDRADE-MARTÍNEZ J, ORTEGA-ZARZOSA G, GÓ MEZ-CORTÉ S A, RODRÍGUEZ-GONZÁLEZ V. N2O catalytic reduction over different porous SiO2 materials functionalized with copper[J]. Powder Technol, 2015,274:305-312. doi: 10.1016/j.powtec.2015.01.048

    15. [15]

      SEDJAME H J, FONTAINE C, LAFAYE G, BARBIER JR J. On the promoting effect of the addition of ceria to platinum based alumina catalysts for VOCs oxidation[J]. Appl Catal B:Environ, 2014,144(1):233-242.  

    16. [16]

      WAN H Q, WANG Z, ZHU J, LI X W, LIU B, GAO F, DONG L, CHEN Y. Influence of CO pretreatment on the activities of CuO/γ-Al2O3 catalysts in CO+O2 reaction[J]. Appl Catal B:Environ, 2008,79(3):254-261. doi: 10.1016/j.apcatb.2007.10.025

    17. [17]

      JIANG M H, WANG B W, YAO Y Q, LI Z H, MA X B, QIN S D, SUN Q. A comparative study of CeO2-Al2O3 support prepared with different methods and its application on MoO3/CeO2-Al2O3 catalyst for sulfur-resistant methanation[J]. Appl Surf Sci, 2013,285:267-277. doi: 10.1016/j.apsusc.2013.08.049

    18. [18]

      ZHANG S M, HUANG W P, QIU X H, LI B Q, ZHENG X C, WU S H. Comparative study on catalytic properties for low-temperature CO oxidation of Cu/CeO2 and CuO/CeO2 prepared via solvated metal atom impregnation and conventional impregnation[J]. Catal Lett, 2002,80(1/2):41-46. doi: 10.1023/A:1015318525080

    19. [19]

      BERA P, ARUNA S T, PATIL K C, HEGDE M S. Studies on Cu/CeO2:A new NO reduction catalyst[J]. J Catal, 1999,186(1):36-44. doi: 10.1006/jcat.1999.2532

    20. [20]

      HOČEVAR S, KRAŠOVEC U O, OREL B, ARICÓ A S, KIM H. CWO of phenol on two differently prepared CuO-CeO2 catalysts[J]. Appl Catal B:Environ, 2000,28(2):113-125. doi: 10.1016/S0926-3373(00)00167-3

    21. [21]

      TANG X L, ZHANG B C, LI Y, XU Y D, XIN Q, SHEN W J. Carbon monoxide oxidation over CuO/CeO2 catalysts[J]. Catal Today, 2004,93/95:191-198. doi: 10.1016/j.cattod.2004.06.040

    22. [22]

      BERA P, PRIOLKAR K R, SARODE P R, HEGDE M S, EMURA S, KUMASHIRO R, LALLA N P. Structural investigation of combustion synthesized Cu/CeO2 catalysts by EXAFS and other physical techniques:Formation of a Ce1-xCuxO2-δ solid solution[J]. Chem Mater, 2002,14(8):3591-3601. doi: 10.1021/cm0201706

    23. [23]

      JIANG X Y, LU G L, ZHOU R X, MAO J X, CHEN Y, ZHENG X M. Studies of pore structure, temperature-programmed reduction performance, and microstructure of CuO/CeO2 catalysts[J]. Appl Surf Sci, 2001,173(3/4):208-220.

    24. [24]

      GIORDANO F, TROVARELLI A, DE LEITENBURG C, GIONA M. A model for the temperature-programmed reduction of low and high surface area ceria[J]. J Catal, 2000,193(2):273-282. doi: 10.1006/jcat.2000.2900

    25. [25]

      LAI S Y, QIU Y F, WANG S J. Effects of the structure of ceria on the activity of gold/ceria catalysts for the oxidation of carbon monoxide and benzene[J]. J Catal, 2006,237(2):303-313. doi: 10.1016/j.jcat.2005.11.020

    26. [26]

      HU C Q. Enhanced catalytic activity and stability of Cu0.13Ce0.87Oy catalyst for acetone combustion:Effect of calcination temperature[J]. Chem Eng J, 2010,159(1/3):129-137.

    27. [27]

      ARENA F, DARIO R, PARMALIANA A. A characterization study of the surface acidity of solid catalysts by temperature programmed methods[J]. Appl Catal A:Gen, 1998,170:127-137. doi: 10.1016/S0926-860X(98)00041-6

    28. [28]

      ROY S, HEGDE M S, MADRAS G. Catalysis for NOx abatement[J]. Appl Energy, 2009,86(11):2283-2297. doi: 10.1016/j.apenergy.2009.03.022

    29. [29]

      LEE K J, KUMAR P A, MAQBOOL M S, RAO K N, SONG K H, HA H P. Ceria added Sb-V2O5/TiO2 catalysts for low temperature NH3 SCR:Physico-chemical properties and catalytic activity[J]. Appl Catal B:Environ, 2013,142/143(10):705-717.

    30. [30]

      CHMIELARZ L, DZIEMBAJ R, GRZYBEK T, KLINIK J, ŁOJEWSKI T, OLSZEWSKA D, WEGRZYN A. Pillared smectite modified with carbon and manganese as catalyst for SCR of NOx with NH3. Part Ⅱ. Temperature-programmed studies[J]. Catal Lett, 2000,70(1):51-56.

    31. [31]

      XU H Y, CHEN Y X, LI W Z. The effect of supports on the activity of methane dissociation over Rh catalysts[J]. Chin J Catal, 2007,28(4):293-295. doi: 10.1016/S1872-2067(07)60026-6

    32. [32]

      KIWI-MINSKER L, BULUSHEV D A, RAINONE F, RENKEN A. Implication of the acid-base properties of V/Ti-oxide catalyst in toluene partial oxidation[J]. J Mol Catal A:Chem, 2002,184(1/2):223-235.  

    33. [33]

      DE RIVAS B, SAMPEDRO C, LÓPEZ-FONSECA R, GUTIÉ RREZ-ORTIZ MÁ, GUTIÉ RREZ-ORTIZ J I. Low-temperature combustion of chlorinated hydrocarbons over CeO2/HZSM5 catalysts[J]. Appl Catal A:Gen, 2012,417/418:93-101. doi: 10.1016/j.apcata.2011.12.028

    34. [34]

      LIN L Y, BAI H. Promotional effects of manganese on the structure and activity of Ce-Al-Si based catalysts for low-temperature oxidation of acetone[J]. Chem Eng J, 2016,291:94-105. doi: 10.1016/j.cej.2016.01.098

    35. [35]

      CARABINEIRO S A C, CHEN X, MARTYNYUK O, BOGDANCHIKOVA N, AVALOS-BORJA M, PESTRYAKOV A, TAVARES P B, ÓRFÃ O J J M, PEREIRA M F R, FIGUEIREDO J L. Gold supported on metal oxides for volatile organic compounds total oxidation[J]. Catal Today, 2015,244:103-114. doi: 10.1016/j.cattod.2014.06.034

    36. [36]

      LIANG C J, FANG J W. Predicting the kinetics of catalytic oxidation of multicomponent organic waste gases[J]. Chem Eng Sci, 2016,144:101-107. doi: 10.1016/j.ces.2016.01.038

  • 加载中
    1. [1]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    2. [2]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    3. [3]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    4. [4]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    5. [5]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    6. [6]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Yuling MaDongqing LiuTao ZhangChengjie SongDongmei LiuPeizhi WangWei Wang . Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 110000-. doi: 10.1016/j.cclet.2024.110000

    9. [9]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    10. [10]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    11. [11]

      Peng ZhangYitao YangTian QinXueqiu WuYuechang WeiJing XiongXi LiuYu WangZhen ZhaoJinqing JiaoLiwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396

    12. [12]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    13. [13]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    14. [14]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    15. [15]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    16. [16]

      Yunli XuXuwen DaLei WangYatong PengWanpeng ZhouXiulian LiuYao WuWentao WangXuesong WangQianxiong Zhou . Ru(Ⅱ)-based aggregation-induced emission (AIE) agents with efficient 1O2 generation, photo-catalytic NADH oxidation and anticancer activity. Chinese Chemical Letters, 2025, 36(5): 110168-. doi: 10.1016/j.cclet.2024.110168

    17. [17]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    18. [18]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    19. [19]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    20. [20]

      Ying ChenXingyuan XiaLei TianMengying YinLing-Ling ZhengQian FuDaishe WuJian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789

Metrics
  • PDF Downloads(1)
  • Abstract views(554)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return