Citation: WANG Si-hua, ZU Yun, QIN Yu-cai, ZHANG Xiao-tong, SONG Li-juan. Fabrication of effective desulfurization species active sites in the CeY zeolites and the adsorption desulfurization mechanisms[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(1): 52-62. shu

Fabrication of effective desulfurization species active sites in the CeY zeolites and the adsorption desulfurization mechanisms

  • Corresponding author: SONG Li-juan, lsong56@263.net
  • Received Date: 19 August 2019
    Revised Date: 28 October 2019

    Fund Project: the National Natural Science Foundation of China 21376114the National Natural Science Foundation of China U1662135The project was supported by the National Natural Science Foundation of China (U1662135, 21376114)

Figures(11)

  • A series of CeY zeolites with different cerium loadings and calcined at different temperatures were prepared and used as the adsorbent for the desulfurization of thiophene containing model oil. The CeY zeolites were characterized by XRD, N2 sorption, FT-IR spectroscopy and GC-SCD and GC-MSD techniques. The effects of aromatics and olefins on the adsorption desulfurization performance were investigated and the active species and reaction mechanism for the adsorption desulfurization on CeY zeolites were probed. The results indicate that the CeY zeolite calcined at 150 ℃ is provided with a large number of Brönsted acid sites and hydroxylated cerium species in the supercages, which can synergistically promote the thiophene oligomerization and then enhance the sulfur breakthrough adsorption capacity (18.45 mg (S)/g). However, a further increase in the calcination temperature and cerium loading may greatly reduce the number of active sites for the adsorption desulfurization and suppress the thiophene oligomerization reaction, leading to a significant decrease in the sulfur breakthrough adsorption capacity (4.03 mg (S)/g). For the thiophene model oils containing low concentration of 1-hexene (< 1.0%) or benzene (< 0.1%), the CeY-12.3-150 zeolite (with a cerium loading of 12.3% and calcined at 150 ℃) also exhibits a relatively high sulfur breakthrough adsorption capacity. However, a further increase in the content of 1-hexene or benzene in the feed may lead to a sharp decrease in the sulfur breakthrough adsorption capacity, due to the alkylation of thiophene and the adsorption mode of "S-H" bonding.
  • 加载中
    1. [1]

      YANG Yong-tan, YANG Hai-ying, ZONG Bao-ning, LU Wan-zhen. Determination and distribution of sulfur compounds in gasoline by gas chromatography-atomic emission detector[J]. Chin J Anal Chem, 2003,31(10):1153-1158. doi: 10.3321/j.issn:0253-3820.2003.10.001

    2. [2]

      YANG Yong-tan, WANG Zheng. Determination and distribution of sulfur compounds in coked gasoline by gas chromatography-sulfur chemiluminescence detection[J]. Chin J Chromatogr, 2007,25(3):384-388. doi: 10.3321/j.issn:1000-8713.2007.03.021

    3. [3]

      ZHU LI-jun, XIA Dao-hong, XIANG Yu-zhi, ZHOU Yu-lu. Composition analysis of sulfur compounds in hydrocoking gasoline[J]. Chem Eng Oil Gas, 2009,38(6):494-497. doi: 10.3969/j.issn.1007-3426.2009.06.009

    4. [4]

      SONG C S. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel[J]. Catal Today, 2003,86(1):211-263.  

    5. [5]

      DEHGHAN R, ANBIA M. Zeolites for adsorptive desulfurization from fuels:A review[J]. Fuel Process Technol, 2017,167:99-116. doi: 10.1016/j.fuproc.2017.06.015

    6. [6]

      TAN P, JIANG Y, SUN L B, LIU X Q, ALBAHILY K, RAVON U, VINU A. Design and fabrication of nanoporous adsorbents for the removal of aromatic sulfur compounds[J]. J Mater Chem A, 2018,6(47):23978-24012. doi: 10.1039/C8TA09184F

    7. [7]

      VELU S, MA X L, SONG C S. Selective adsorption for removing sulfur from jet fuel over zeolite-based adsorbents[J]. Ind Eng Chem Res, 2003,42(21):5293-5304. doi: 10.1021/ie020995p

    8. [8]

      LIN L G, ZHANG Y Z, ZHANG H Y, LU F W. Adsorption and solvent desorption behavior of ion-exchanged modified Y zeolites for sulfur removal and for fuel cell applications[J]. J Colloid Interf Sci, 2011,360(2):753-759. doi: 10.1016/j.jcis.2011.04.075

    9. [9]

      WANG H G, SONG L J, JIANG H, XU J, JIN L L, ZHANG X T, SUN Z L. Effects of olefin on adsorptive desulfurization of gasoline over Ce(Ⅳ)Y zeolites[J]. Fuel Process Technol, 2009,90(6):835-838. doi: 10.1016/j.fuproc.2009.03.004

    10. [10]

      DUAN L H, GAO X H, MENG X H, ZHANG H T, WANG Q, QIN Y C, ZHANG X T, SONG L J. Adsorption, co-adsorption, and reactions of sulfur compounds, aromatics, olefins over Ce-exchanged Y zeolite[J]. J Phys Chem C, 2012,116(49):25748-25756. doi: 10.1021/jp303040m

    11. [11]

      QIN Y C, MO Z S, YU W G, DONG S W, DUAN L H, GAO X H, SONG L J. Adsorption behaviors of thiophene, benzene, and cyclohexene on FAU zeolites:Comparison of CeY obtained by liquid-, and solid-state ion exchange[J]. Appl Surf Sci, 2014,292:5-15. doi: 10.1016/j.apsusc.2013.11.036

    12. [12]

      ZU Y, ZHANG C, QIN Y C, ZHANG X T, ZHANG L, LIU H H, GAO X H, SONG L J. Ultra-deep adsorptive removal of thiophenic sulfur compounds from FCC gasoline over the specific active sites of CeHY zeolite[J]. J Energy Chem, 2019,39:256-267. doi: 10.1016/j.jechem.2019.04.010

    13. [13]

      ZU Y, HUI Y, QIN Y C, ZHANG L, LIU H H, ZHANG X T, GUO Z S, SONG L J, GAO X H. Facile Fabrication of effective cerium (Ⅲ) hydroxylated species as adsorption active sites in CeY zeolite adsorbents towards ultra-deep desulfurization[J]. Chem Eng J, 2019,375122014. doi: 10.1016/j.cej.2019.122014

    14. [14]

      SHI Y C, ZHANG W., ZHANG H X, TIAN F P, JIA C Y, CHEN Y Y. Effect of cyclohexene on thiophene adsorption over NaY and LaNaY zeolites[J]. Fuel Process Technol, 2013,110:24-32. doi: 10.1016/j.fuproc.2013.01.008

    15. [15]

      SHI Y C, YANF X J, TIAN F P, JIA C Y, CHEN Y Y. Effects of toluene on thiophene adsorption over NaY and Ce(Ⅳ)Y zeolites[J]. J Nat Gas Chem, 2012,21(4):421-425. doi: 10.1016/S1003-9953(11)60385-X

    16. [16]

      WANG Xiang-sheng, LUO Guo-hua. The removal of thiophene from coking benzene over HZSM-5 zeolite[J]. Chin J Catal, 1996,17(6):530-534.

    17. [17]

      WANG J, XU F, XIE W J, MEI J Z, ZHANG Q Z, CAI J, CAI W M. The enhanced adsorption of dibenzothiophene onto cerium/nickel-exchanged zeolite Y[J]. J Hazard Mater, 2009,163(2/3):538-543.

    18. [18]

      QIN Yu-cai, GAO Xiong-hou, DUAN Lin-hai, FAN Yue-chao, YU Wen-guang, ZHANG Hai-tao, SONG Li-juan. Effects on adsorption desulfurization of CeY zeolites:Acid catalysis and competitive adsorption[J]. Acta Phys-Chim Sin, 2014,30(3):544-550.  

    19. [19]

      LI J C, ZENG P H, ZHAO L, REN S Y, GUO Q X, ZHANG H J, WANG B J, LIU H H, PANG X M, GAO X H, SHEN B J. Tuning of acidity in CeY catalytic cracking catalysts by controlling the migration of Ce in the ion exchange step through valence changes[J]. J Catal, 2015,329:441-448. doi: 10.1016/j.jcat.2015.06.012

    20. [20]

      LIAO J J, BAO W R, CHANG L P. An approach to study the desulfurization mechanism and the competitive behavior from aromatics:A case study on CeY zeolite[J]. Fuel Process Technol, 2015,140:104-112. doi: 10.1016/j.fuproc.2015.08.036

    21. [21]

      LIAO J J, WANG Y, CHANG L P, BAO W R. A process for desulfurization of coking benzene by a two-step method with reuse of sorbent/thiophene and its key procedures[J]. Green Chem, 2015,17(5):3164-3175. doi: 10.1039/C4GC02505A

    22. [22]

      DU X H, GAO X H, Zhang H T, LI X L, LIU P S. Effect of cation location on the hydrothermal stability of rare earth-exchanged Y zeolites[J]. Catal Commun, 2013,35:17-22. doi: 10.1016/j.catcom.2013.02.010

    23. [23]

      KIM C W, KANG H C, HEO N H, SEFF K. Encapsulating photoluminescent materials in zeolites. Ⅱ. Crystal structure of fully dehydrated Ce21H46O18-Y (Si/Al=1.69) containing Ce4O44+, CeOH2+, Ce3+, and H+[J]. J Phys Chem C, 2015,119(43):24501-24511. doi: 10.1021/acs.jpcc.5b08373

    24. [24]

      LEE E F T, REES L V C. Calcination of cerium (Ⅲ) exchanged Y zeolite[J]. Zeolites, 1987,7(5):446-450. doi: 10.1016/0144-2449(87)90013-3

    25. [25]

      NERJ J G, MASCARENHAS Y P, BONAGAMBA T J, Mello N C, SOUZA-AGUIAR E F. Location of cerium and lanthanum cations in CeNaY and LaNaY after calcination[J]. Zeolites, 1997,18:44-49. doi: 10.1016/S0144-2449(96)00094-2

    26. [26]

      BOLTON A P. The nature of rare-earth exchanged Y zeolites[J]. J Catal, 1971,22(1):9-15. doi: 10.1016/0021-9517(71)90259-4

    27. [27]

      WANG N N, WANG Y, CHENG H F, FU M E, TAO Z, WU W Z. Relationship between two characteristic diffractions and the status of cationic lanthanum species in zeolite LaNaY[J]. J Porous Mater, 2013,20(5):1371-1378. doi: 10.1007/s10934-013-9723-1

    28. [28]

      QIU L M, FU Y, ZHENG J Y, HUANG N G, LU L J, GAO X Z, XIN M D, LUO Y B, SHI Y Q, XU G T. Investigation on the cation location, structure and performances of rare earth-exchanged Y zeolite[J]. J Rare Earths, 2017,35(7):658-666. doi: 10.1016/S1002-0721(17)60960-8

    29. [29]

      WANG M, JAEGERS N R, LEE M S, WAN C, HU J Z, SHI H, MEI D H, BURTON S D, CAMAIONI D M, GUTIERREZ O Y, GLEZAKOU V A, ROUSSEAU R, WANG Y, LERCHER J A. Genesis and stability of hydronium ions in zeolite channels[J]. J Am Chem Soc, 2019,141(8):3444-3455. doi: 10.1021/jacs.8b07969

    30. [30]

      ZU Yun, QIN Yu-cai, GAO Xiong-hou, MO Zhou-sheng, ZHANG Lei, ZHANG Xiao-tong, SONG Li-juan. Mechanisms of thiophene conversion over the modified Y zeolites under catalytic cracking conditions[J]. J Fuel Chem Technol, 2015,43(7):862-869. doi: 10.3969/j.issn.0253-2409.2015.07.012

  • 加载中
    1. [1]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    2. [2]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    3. [3]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    4. [4]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    5. [5]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    6. [6]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    7. [7]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    8. [8]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    9. [9]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    10. [10]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    11. [11]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    12. [12]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    13. [13]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    14. [14]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    15. [15]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    16. [16]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    17. [17]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

    18. [18]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    19. [19]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    20. [20]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

Metrics
  • PDF Downloads(8)
  • Abstract views(2499)
  • HTML views(330)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return