Citation: Wang Lan, Yang Naidi, Chen Ding, Fang Haixiao, Wu Qiong, Li Lin. Mitochondrial Specific Detection and Regulation[J]. Chemistry, ;2020, 83(6): 488-496. shu

Mitochondrial Specific Detection and Regulation

Figures(5)

  • Mitochondria are bilayer-membrane organelles that are found in most cells. They are called as "Energy factories" as they can generate energy through the respiratory chain. Mitochondria are involved in cell differentiation, signaling and apoptosis, and they can also regulate cell growth and cell cycle. Mitochondrial dysfunction is associated with many human diseases such as Parkinson's disease, Alzheimer's disease, cardiovascular disease and cancer. Due to its important role in both cells and organisms, mitochondria have been the focus of research for a long time. This review provides the latest progress of mitochondrial-specific detection and regulation.
  • 加载中
    1. [1]

      Lin M T, Beal M F. Nature, 2006, 443(7113): 787~795. 

    2. [2]

      O'Rourke B. Front. Physiol., 2010, 1: 00007.

    3. [3]

      Gao P, Pan W, Li N, et al. Chem. Sci., 2019, 10(24): 6035~6071. 

    4. [4]

      Li L, Zhang C W, Ge J, et al. Angew. Chem. Int. Ed., 2015, 54(37): 10821~10825. 

    5. [5]

      Chevalier A, Zhang Y, Khdour O M, et al. J. Am. Chem. Soc., 2016, 138(37): 12009~12012. 

    6. [6]

      Tan Y, Zhang L, Man K H, et al. ACS Appl. Mater. Interf., 2017, 9(8): 6796~6803. 

    7. [7]

      Zhang J, Chai X, He X P, et al. Chem. Soc. Rev., 2019, 48(2): 683~722. 

    8. [8]

      Lu X H, Chen Z J, Dong X C, et al. ACS Sensors, 2018, 3(1): 59~64. 

    9. [9]

      Bjorn M E, Hasselbalch H C. Mediat. Inflamm., 2015, 648090.

    10. [10]

      Shchepinova M M, Cairns A G, Prime T A, et al. Cell Chem. Biol., 2017, 24(10): 1285~1298.e12. 

    11. [11]

      Wang J, Liu L, Xu W, et al. Anal. Chem., 2019, 91(9): 5786~5793. 

    12. [12]

      Duan C, Won M, Verwilst P, et al. Anal. Chem., 2019, 91(6): 4172~4178. 

    13. [13]

      Xie X, Wang J, Yan Y, et al. Analyst, 2018, 143(23): 5736~5743. 

    14. [14]

      Niu H, Chen K, Xu J, et al. Sens. Actuat. B, 2019, 299: 126938. 

    15. [15]

      Xu X H, Liu C, Mei Y, et al. J. Mater. Chem. B., 2019, 7(43): 6861~6867. 

    16. [16]

      Liu Y, Bai L, Li Y H, et al. Sens. Actuat. B, 2019, 279: 38~43. 

    17. [17]

      Xu J, Zhang Y, Yu H, et al. Anal. Chem., 2016, 88(2): 1455~1461. 

    18. [18]

      Liu J, Liang J, Wu C, et al. Anal. Chem., 2019, 91(10): 6902~6909.

    19. [19]

      Poyton R O, BallK A, Castello P R. Trends Endocrin. Met., 2009, 20(7): 332~340. 

    20. [20]

      He H, Ye Z, Xiao Y, et al. Anal. Chem., 2018, 90(3): 2164~2169. 

    21. [21]

      Jia X, Chen Q, Yang Y, et al. J. Am. Chem. Soc., 2016, 138(34): 10778~10781. 

    22. [22]

      Sun Y Q, Liu J, Zhang H, et al. J. Am. Chem. Soc., 2014, 136(36): 12520~12523. 

    23. [23]

      Quintana~Cabrera R, Bolanos J P. Biochem. Soc. Trans., 2013, 41: 106~110. 

    24. [24]

      Wang S, Yin H, Huang Y, et al. Anal. Chem., 2018, 90(13): 8170~8177. 

    25. [25]

      Yuan P, Mao X, Wu X, et al. Angew. Chem. Int. Ed., 2019, 58(23): 7657~7661. 

    26. [26]

      Chen J, Jiang X, Zhang C, et al. ACS Sensors, 2017, 2(9): 1257~1261. 

    27. [27]

      Ji A, Fan Y C, Ren W, et al. ACS Sensors, 2018, 3(5): 992~997. 

    28. [28]

      Han C, Yang H, Chen M, et al. ACS Appl. Mater. Interf., 2015, 7(50): 27968~27975. 

    29. [29]

      Zeng Q, Guo Q, Yuan Y, et al. Anal. Chem., 2017, 89(4): 2288~2295. 

    30. [30]

      Gu Y, Zhao Z, Niu G, et al. ACS Appl. Bio Mater., 2019, 2(7): 3120~3127. 

    31. [31]

      Yang M, Fan J, Sun W, et al. Anal. Chem., 2019, 91(19): 12531~12537. 

    32. [32]

      Niu W, Guo L, Li Y, et al. Anal. Chem., 2016, 88(3): 1908~1914. 

    33. [33]

      Ren T B, Zhang Q L, Su D, et al. Chem. Sci., 2018, 9(24): 5461~5466. 

    34. [34]

      Zhang X, He N, Huang Y, et al. Sens. Actuat. B., 2019, 282: 69~77. 

    35. [35]

      Du Z, Zhang R, Song B, et al. Chem. Eur. J., 2019, 25(6): 1498~1506. 

    36. [36]

      Song G, Liu A, Jiang H, et al. Anal. Chim. Acta., 2019, 1053: 148~154. 

    37. [37]

      Li S J, Li Y F, Liu H W, et al. Anal. Chem., 2018, 90(15): 9418~9425. 

    38. [38]

      Wu Z, Liang D, Tang X. Anal. Chem., 2016, 88(18): 9213~9218. 

    39. [39]

      Han Q, Ru J, Wang X, et al. ACS Appl. Bio. Mater., 2019, 2(5): 1987~1997. 

    40. [40]

      Park S, Bae D J, Ryu Y M, et al. Chem. Commun., 2016, 52(68): 10400~10402. 

    41. [41]

      Xiang M H, Huang H, Liu X J, et al. Anal. Chem., 2019, 91(9): 5489~5493. 

    42. [42]

      Liang B, Shao W, Zhu C, et al. ACS Chem. Biol., 2016, 11(2): 425~434. 

    43. [43]

      Zhang Q, Li S, Fu C, et al. J. Mater. Chem. B, 2019, 7(3): 443~450. 

    44. [44]

      Ma D, Huang C, Zheng J, et al. Anal. Chem., 2019, 91(2): 1360~1367. 

    45. [45]

      Zhang Y, Xia S, Mikesell L, et al. ACS Appl. Bio. Mater., 2019, 2(11): 4986~4997. 

    46. [46]

      Lan G, Ni K, You E, et al. J. Am. Chem. Soc., 2019, 141(48): 18964~18969. 

    47. [47]

      Li X Y, Hu Y M, Li X H, et al. Anal. Chem., 2019, 91(17): 11409~11416. 

    48. [48]

      Sun J, Ling P, Gao F. Anal. Chem., 2017, 89(21): 11703~11710. 

    49. [49]

      Liu Z, Pei H, Zhang L, et al. ACS Nano, 2018, 12(12): 12357~12368. 

    50. [50]

      McCormick S P, Moore M J, Lindahl P A. Biochemistry, 2015, 54(22): 3442~3453. 

    51. [51]

      Li J, Kwon N, Jeong Y, et al. ACS Appl. Mater. Interf., 2018, 10(15): 12150~12154. 

    52. [52]

      Swamy K M K, Eom S, Liu Y, et al. Sens. Actuat. B, 2019, 281: 350~358. 

    53. [53]

      Long L L, Huang M Y, Wang N, et al. J. Am. Chem. Soc., 2018, 140(5): 1870~1875. 

    54. [54]

      Abeywickrama C S, Bertman K A, Plescia C B, et al. ACS Appl. Bio. Mater., 2019, 2(11): 5174~5181. 

    55. [55]

      Qiao J, Chen C F, Shangguan D H, et al. Anal. Chem., 2018, 90(21): 12553~12558. 

    56. [56]

      Li L L, Xu H R, Li K, et al. Sens. Actuat. B, 2019, 286: 575~582. 

    57. [57]

      Wu Z D, Puigserver P, Andersson U, et al. Cell, 1999, 98(1): 115~124. 

    58. [58]

      Lehman J J, Barger P M, Kovacs A, et al. J. Clin. Invest., 2000, 106(7): 847~856. 

    59. [59]

      Nisoli E, Clementi E, Paolucci C, et al. Science, 2003, 299(5608): 896~899. 

    60. [60]

      LeBleu V S, O'Connell J T, Herrera K N G, et al. Nat. Cell Biol., 2014, 16(10): 992~1003. 

    61. [61]

      Yang W, Nagasawa K, Munch C, et al. Cell, 2016, 167(4): 985~1000. 

    62. [62]

      Menk A V, Scharping N E, Rivadeneira D B, et al. J. Exp. Med., 2018, 215(4): 1091~1100. 

    63. [63]

      Huang Q C, Li J B, Xing J L, et al. J. Hepatol., 2014, 61(4): 859~866. 

    64. [64]

      Li J B, Huang Q C, Long X Y, et al. J. Hepatol., 2015, 63(6): 1378~1389. 

    65. [65]

      Chen H C, Chan D C. Hum. Mol. Genet., 2009, 18: R169~R176.

    66. [66]

      Westermann B. Nat. Rev. Mol. Cell Biol., 2010, 11(12): 872~884. 

    67. [67]

      Twig G, Elorza A, Molina A J A, et al. EMBO J., 2008, 27(2): 433~446. 

    68. [68]

      Momcilovic M, Jones A, Bailey S T, et al. Nature, 2019, 575(7782): 380~384. 

    69. [69]

      Mishra P, Varuzhanyan G, Pham A H, et al. Cell MeTab., 2015, 22(6): 1033~1044. 

    70. [70]

      Chen M, Chen Z, Wang Y, et al. Autophagy, 2016, 12(4): 689~702. 

    71. [71]

      Ma J, Zhai Y J, Chen M, et al. PloS One, 2019, 14(1): e0211459.

    72. [72]

      Chen Q, Zhang J, Zhao K, et al. Protein Cell, 2014, 5(8): 643~647. 

    73. [73]

      Zhu P, Liu Y, Zhang F, et al. Cancer Res., 2018, 78(11): 2813~2824. 

    74. [74]

      Chan N C, Salazar A M, Pham A H, et al. Hum. Mol. Genet., 2011, 20(9): 1726~1737. 

    75. [75]

      Kim I, Rodriguez-Enriquez S, Lemasters J J. Arch. Biochem. Biophys., 2007, 462(2): 245~253. 

    76. [76]

      Ashrafi G, Schwarz T L. Cell. Death. Differ., 2013, 20(1): 31~42. 

    77. [77]

      Zhou Y, Long Q, Wu H, et al. Autophagy, 2020, 16(3): 562~574. 

    78. [78]

      Dagda R K, Cherra S J, Kulich S M, et al. J. Biol. Chem., 2009, 284(20): 13843~13855. 

    79. [79]

      Tanaka A, Cleland M M, Xu S, et al. J. Cell Biol., 2010, 191(7): 1367~1380. 

    80. [80]

      Heo J M, Ordureau A, Paulo J A, et al. Mol. Cell, 2015, 60(1): 7~20. 

    81. [81]

      Wang L, Cho Y L, Tang Y, et al. Cell Res., 2018, 28(8): 787~802. 

    82. [82]

      Yan C, Gong L, Chen L, et al. Autophagy, 2020, 16(3): 419~434. 

  • 加载中
    1. [1]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    2. [2]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    3. [3]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    4. [4]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    5. [5]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    6. [6]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    7. [7]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    8. [8]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    9. [9]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    10. [10]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    11. [11]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    12. [12]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    13. [13]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    14. [14]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    15. [15]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    16. [16]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    17. [17]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    18. [18]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    19. [19]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    20. [20]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

Metrics
  • PDF Downloads(19)
  • Abstract views(1465)
  • HTML views(539)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return