Citation: LIU Yan, ZHU Guo-hua, WU Kui, LI Wen-song, WANG Wei-yan, YANG Yun-quan. Preparation of Al-based layered double hydroxides and corresponding mixed oxides supported Pt catalysts and their performance in the hydrodeoxygenation of p-cresol[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(10): 1193-1201. shu

Preparation of Al-based layered double hydroxides and corresponding mixed oxides supported Pt catalysts and their performance in the hydrodeoxygenation of p-cresol

  • Corresponding author: WANG Wei-yan, wangweiyan@xtu.edu.cn YANG Yun-quan, yangyunquan@xtu.edu.cn
  • Received Date: 16 July 2018
    Revised Date: 29 August 2018

    Fund Project: the National Natural Science Foundation of China 21676225the National Natural Science Foundation of China 21776236Natural Science Foundation of Hunan Province 2018JJ2384The project was supported by the National Natural Science Foundation of China (21776236, 21676225), Natural Science Foundation of Hunan Province (2018JJ2384), the Scientific Research Foundation of Huaihua University (HHUY2017-08) and Collaborative Innovation Centre of New Chemical Technologies for Environmental Benignity and Efficient Resource Utilizationthe Scientific Research Foundation of Huaihua University HHUY2017-08

Figures(7)

  • Al-based layered double hydroxides and corresponding mixed oxides were prepared and used as the supports for the Pt based catalysts; their catalytic performance in the hydrodeoxygenation (HDO) of p-cresol was then investigated. The results indicate that the catalytic performance of Pt based catalysts is related to the composition and structure of the support; Pt directly supported on the Al-based layered double hydroxides exhibits higher activity in p-cresol HDO than that supported on corresponding mixed oxides. Especially, for the HDO at 275 ℃ and 2 MPa for 1 h, the conversion of p-cresol over Pt-Ni-Al-H is 99.8%, with a selectivity of 1.4% to toluene, whereas the selectivity to toluene over Pt-Zn-Al-H reaches 84.1%. Moreover, the Pt based catalysts are also active for the dehydrogenation of methylcyclohexane to toluene, which can effectively reduce the hydrogen consumption in HDO.
  • 加载中
    1. [1]

      LIU Z, GUAN D B, WEI W, DAVIS S J, CIAIS P, BAI J, PENG S S, ZHANG Q, HUBACEK K, MARLAND G, ANDRES R J, CRAWFORD-B D, LIN J T, ZHAO H Y, HONG C P, BODEN T A, FENG K S, PETERS G P, XI F M, LIU J G, LI Y, ZHAO Y, ZENG N, HE K. Reduced carbon emission estimates from fossil fuel combustion and cement production in China[J]. Nature, 2015,524(7565):335-338. doi: 10.1038/nature14677

    2. [2]

      UPTON B M, KASKO A M. Strategies for the conversion of lignin to high-value polymeric materials:Review and perspective[J]. Chem Rev, 2016,116(4):2275-2306. doi: 10.1021/acs.chemrev.5b00345

    3. [3]

      LIU C J, WANG H M, KARIM A M, SUN J M, WANG Y. Catalytic fast pyrolysis of lignocellulosic biomass[J]. Chem Soc Rev, 2014,43(22):7594-7623. doi: 10.1039/C3CS60414D

    4. [4]

      PATEL M, KUMAR A. Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil:A review[J]. Renewable Sustainable Energy Rev, 2016,58:1293-1307. doi: 10.1016/j.rser.2015.12.146

    5. [5]

      SAIDI M, SAMIMI F H, KARIMIPOURFARD D, NIMMANWUDIPONG T, GATES B C, RAHIMPOUR M R. Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation[J]. Energy Environ Sci, 2014,7(1):103-129. doi: 10.1039/C3EE43081B

    6. [6]

      ROBINSON A M, HENSLEY J E, MEDLIN J. Will. Bifunctional catalysts for upgrading of biomass-derived qxygenates:A review[J]. ACS Catal, 2016,6(8):5026-5043. doi: 10.1021/acscatal.6b00923

    7. [7]

      GAO D N, XIAO Y, VARMA A. Guaiacol hydrodeoxygenation over platinum catalyst:Reaction pathways and kinetics[J]. Ind Eng Chem Res, 2015,54(43):10638-10644. doi: 10.1021/acs.iecr.5b02940

    8. [8]

      LI X P, CHEN G Y, LIU C X, MA W C, YAN B B, ZHANG J G. Hydrodeoxygenation of lignin-derived bio-oil using molecular sieves supported metal catalysts:A critical review[J]. Renewable Sustainable Energy Rev, 2017,71:296-308. doi: 10.1016/j.rser.2016.12.057

    9. [9]

      SHAFAGHAT H, REZAEI P S, DAUD W M A W. Catalytic hydrodeoxygenation of simulated phenolic bio-oil to cycloalkanes and aromatic hydrocarbons over bifunctional metal/acid catalysts of Ni/HBeta, Fe/HBeta and NiFe/HBeta[J]. J Ind Eng Chem, 2016,35:268-276. doi: 10.1016/j.jiec.2016.01.001

    10. [10]

      WANG W Y, ZHANG K, QIAO Z Q, LI L, LIU P L, YANG Y Q. Influence of surfactants on the synthesis of MoS2 catalysts and their activities in the hydrodeoxygenation of 4-Methylphenol[J]. Ind Eng Chem Res, 2014,53(25):10301-10309. doi: 10.1021/ie500830f

    11. [11]

      WANG W Y, LI L, TAN S, WU K, ZHU G H, LIU Y, XU Y, YANG Y Q. Preparation of NiS2//MoS2 catalysts by two-step hydrothermal method and their enhanced activity for hydrodeoxygenation of p-cresol[J]. Fuel, 2016,179:1-9. doi: 10.1016/j.fuel.2016.03.068

    12. [12]

      LIU G L, ROBERTSON A W, LI M M-J, KUO W C H, DARBY M T, MUHIEDDINE M H, LIN Y-C, SUENAGA K, STAMATAKIS M, WARNER J H, TSANG S C E. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction[J]. Nat Chem, 2017,9:810-816. doi: 10.1038/nchem.2740

    13. [13]

      BADAWI M, PAUL J F, CRISTOL S, PAYEN E, ROMERO Y, RICHARD F, BRUNET S, LAMBERT D, PORTIER X, POPOV A, KONDRATIEVA E, GOUPIL J M, EI F J, GILSON J P, MARIEY L, TRAVERT A, MAUGÉ F. Effect of water on the stability of Mo and CoMo hydrodeoxygenation catalysts:A combined experimental and DFT study[J]. J Catal, 2011,282(1):155-164. doi: 10.1016/j.jcat.2011.06.006

    14. [14]

      ZHAO C, KOU Y, LEMONIDOU A A, LI X B, LERCHER J A. Highly selective catalytic conversion of phenolic bio-oil to alkanes[J]. Angew Chem Int Ed, 2009,48(22):3987-3990. doi: 10.1002/anie.v48:22

    15. [15]

      WANG W Y, LIU P L, WU K, TAN S, LI W S, YANG Y Q. Preparation of hydrophobic reduced graphene oxide supported Ni-B-P-O and Co-B-P-O catalysts and their high hydrodeoxygenation activities[J]. Green Chem, 2016,18(4):984-988. doi: 10.1039/C5GC02073E

    16. [16]

      LEE E H, PARK R-S, KIM H, PARK S H, JUNG S-C, JEON J-K, KIM S C, PARK Y-K. Hydrodeoxygenation of guaiacol over Pt loaded zeolitic materials[J]. J Ind Eng Chem, 2016,37:18-21. doi: 10.1016/j.jiec.2016.03.019

    17. [17]

      ROBINSON A, FERGUSON G A, GALLAGHER J R, CHEAH S, BECKHAM G T, SCHAIDLE J A, HENSLEY J E, MEDLIN J W. Enhanced hydrodeoxygenation of m-Cresol over bimetallic pt-mo catalysts through an oxophilic metal-induced tautomerization pathway[J]. ACS Catal, 2016,6(7):4356-4368. doi: 10.1021/acscatal.6b01131

    18. [18]

      HUNNS J A, ARROYO M, LEE A F, ESCOLA J M, SERRANO D, WILSON K. Hierarchical mesoporous Pd/ZSM-5 for the selective catalytic hydrodeoxygenation of m-cresol to methylcyclohexane[J]. Catal Sci Technol, 2016,6(8):2560-2564. doi: 10.1039/C5CY02072G

    19. [19]

      BUI V N, LAURENTI D, DELICHÈRE P, GEANTET C. Hydrodeoxygenation of guaiacol:Part Ⅱ:Support effect for CoMoS catalysts on HDO activity and selectivity[J]. Appl Catal B:Environ, 2011,101(3/4):246-255.  

    20. [20]

      WANG W Y, WU K, LIU P L, LI L, YANG Y Q, WANG Y. Hydrodeoxygenation of p-cresol over Pt/Al2O3 catalyst promoted by ZrO2, CeO2, and CeO2-ZrO2[J]. Ind Eng Chem Res, 2016,55(28):7598-7603. doi: 10.1021/acs.iecr.6b00515

    21. [21]

      ZANUTTINI M S, PERALTA M A, QUERINI C A. Deoxygenation of m-cresol:Deactivation and regeneration of Pt/γ-Al2O3 catalysts[J]. Ind Eng Chem Res, 2015,54(18):4929-4939. doi: 10.1021/acs.iecr.5b00305

    22. [22]

      NIKULSHIN P A, SALNIKOV V A, VARAKIN A N, KOGAN V M. The use of CoMoS catalysts supported on carbon-coated alumina for hydrodeoxygenation of guaiacol and oleic acid[J]. Catal Today, 2016,271:45-55. doi: 10.1016/j.cattod.2015.07.032

    23. [23]

      SHUKLA A A, GOSAVI P V, PANDE J V, KUMAR V P, CHARY K V R, BINIWALE R B. Efficient hydrogen supply through catalytic dehydrogenation of methylcyclohexane over Pt/metal oxide catalysts[J]. Int J Hydrogen Energy, 2010,35(9):4020-4026. doi: 10.1016/j.ijhydene.2010.02.014

    24. [24]

      YU J F, GE Q J, FANG W, XU H Y. Enhanced performance of Ca-doped Pt/γ-Al2O3 catalyst for cyclohexane dehydrogenation[J]. Int J Hydrogen Energy, 2011,36(18):11536-11544. doi: 10.1016/j.ijhydene.2011.06.066

    25. [25]

      MANFRO R L, PIRES T P M D, RIBEIRO N F P, SOUZA M M V M. Aqueous-phase reforming of glycerol using Ni-Cu catalysts prepared from hydrotalcite-like precursors[J]. Catal Sci Technol, 2013,3(5):1278-1287. doi: 10.1039/c3cy20770f

    26. [26]

      TIAN Z B, LI Q Y, HOU J Y, PEI L, LI Y, AI S Y. Platinum nanocrystals supported on CoAl mixed metal oxide nanosheets derived from layered double hydroxides as catalysts for selective hydrogenation of cinnamaldehyde[J]. J Catal, 2015,331:193-202. doi: 10.1016/j.jcat.2015.08.020

    27. [27]

      LIU X F, FAN B B, GAO S C, LI R F. Transesterification of tributyrin with methanol over MgAl mixed oxides derived from MgAl hydrotalcites synthesized in the presence of glucose[J]. Fuel Process Technol, 2013,106:761-768. doi: 10.1016/j.fuproc.2012.10.014

    28. [28]

      KONG X, ZHENG R X, ZHU Y F, DING G Q, ZHU Y L, LI Y W. Rational design of Ni-based catalysts derived from hydrotalcite for selective hydrogenation of 5-hydroxymethylfurfural[J]. Green Chem, 2015,17(4):2504-2514. doi: 10.1039/C5GC00062A

    29. [29]

      GENNEQUIN C, SIFFERT S, COUSIN R, ABOUKAÏS A. Co-Mg-Al hydrotalcite precursors for catalytic total qxidation of volatile organic compounds[J]. Top Catal, 2009,52(5):482-491. doi: 10.1007/s11244-009-9183-7

    30. [30]

      CAI W Q, YU J G, JARONIEC M. Template-free synthesis of hierarchical spindle-likeγ-Al2O3 materials and their adsorption affinity towards organic and inorganic pollutants in water[J]. J Mater Chem, 2010,20(22):4587-4594. doi: 10.1039/b924366f

    31. [31]

      BONURA G, CORDARO M, CANNILLA C, ARENA F, FRUSTERI F. The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol[J]. Appl Catal B:Environ, 2014,152-153:152-161. doi: 10.1016/j.apcatb.2014.01.035

    32. [32]

      DE S P M, RABELO-N R C, BORGES L E P, JACOBS G, DAVIS B H, SOOKNOI T, RESASCO D E, NORONHA F B. Role of keto intermediates in the hydrodeoxygenation of phenol over Pd on qxophilic supports[J]. ACS Catal, 2015,5(2):1318-1329. doi: 10.1021/cs501853t

    33. [33]

      DO P T M, FOSTER A J, CHEN J G, LOBO R F. Bimetallic effects in the hydrodeoxygenation of meta-cresol onγ-Al2O3 supported Pt-Ni and Pt-Co catalysts[J]. Green Chem, 2012,14(5):1388-1397. doi: 10.1039/c2gc16544a

    34. [34]

      SHI D, VOHS J M. Deoxygenation of biomass-derived oxygenates:reaction of furfural on Zn-modified Pt(111)[J]. ACS Catal, 2015,5(4):2177-2183. doi: 10.1021/acscatal.5b00038

    35. [35]

      CHEN W B, NIE H, LI D D, LONG X Y, VAN G J, MAUGÉ F. Effect of Mg addition on the structure and performance of sulfide Mo/Al2O3 in HDS and HDN reaction[J]. J Catal, 2016,344:420-433. doi: 10.1016/j.jcat.2016.08.025

  • 加载中
    1. [1]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    2. [2]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    3. [3]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    4. [4]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    5. [5]

      Hui YangGuangxun ZhangYueyao SunHuijie ZhouHuan Pang . Bimetallic zeolitic imidazolate framework derived hollow layered double hydroxide with tailorable interlayer spacing for nickel-zinc batteries. Chinese Chemical Letters, 2025, 36(6): 110016-. doi: 10.1016/j.cclet.2024.110016

    6. [6]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

    7. [7]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    8. [8]

      Yuhan Wu Qing Zhao Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271

    9. [9]

      Juan CHENGuoyu YANG . A porous-layered aluminoborate built by mixed oxoboron clusters and AlO4 tetrahedra. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 193-200. doi: 10.11862/CJIC.20240341

    10. [10]

      Tianyi YangFangxi SuDehuan ShiShenghong ZhongYalin GuoZhaohui LiuJianfeng Huang . Efficient propane dehydrogenation catalyzed by Ru nanoparticles anchored on a porous nitrogen-doped carbon matrix. Chinese Chemical Letters, 2025, 36(2): 110444-. doi: 10.1016/j.cclet.2024.110444

    11. [11]

      Yixin LuMinghan QinShixian ZhangZhen LiuWang SunZhenhua WangJinshuo QiaoKening Sun . Triple-conducting heterostructure anodes for electrochemical ethane nonoxidative dehydrogenation by protonic ceramic electrolysis cells. Chinese Chemical Letters, 2025, 36(4): 110567-. doi: 10.1016/j.cclet.2024.110567

    12. [12]

      Kun YangAnhui LiPeng ZhangGuilin LiuLiusai HuangYumeng FoLuyuan YangXiangyang JiJian LiuWeiyu Song . Hierarchical zeolites stabilized cobalt(Ⅱ) as propane dehydrogenation catalyst: Enhanced activity and coke tolerance via alkaline post-treatment. Chinese Chemical Letters, 2025, 36(5): 110663-. doi: 10.1016/j.cclet.2024.110663

    13. [13]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    14. [14]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    15. [15]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    16. [16]

      Yuchen Wang Zhenhao Xu Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418

    17. [17]

      Qingbai TianBingLiang YuZhihao LiWei HongQian LiXing Xu . Versatile catalytic membranes anchored with metal-nitrogen based metal oxides for ultrafast Fenton-like oxidation. Chinese Chemical Letters, 2025, 36(6): 110322-. doi: 10.1016/j.cclet.2024.110322

    18. [18]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    19. [19]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    20. [20]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

Metrics
  • PDF Downloads(6)
  • Abstract views(597)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return