Citation: Zhang Chunyan, Luo Jianxin, Yu Guipeng, Pan Chunyue. Progress in Fluorescent Sensing Materials for Ferric Ion Detection[J]. Chemistry, ;2019, 82(9): 771-778. shu

Progress in Fluorescent Sensing Materials for Ferric Ion Detection

  • Corresponding author: Luo Jianxin, luojianxin392@163.com
  • Received Date: 17 May 2019
    Accepted Date: 15 July 2019

Figures(6)

  • Accurate and quantitative detection of Fe3+ is of great significance to environmental protection and human health. At present, a large number of fluorescent sensing materials were developed for the detection in molecular sensing, gas sensing, environment monitoring and other areas. Researchers have vigorously developed a variety of novel fluorescent materials to achieve fast, ultra-sensitive and ultra-selective detection of Fe3+. In this paper, recent advances in advanced fluorescent materials for the detection of Fe3+, particularly, metal-organic frameworks (MOFs), quantum dots (QDs), metal nanoclusters, fluorescent small molecules, fluorescent polymers are summarized. Subsequently, the problems and the limitations in fluorescent sensing materials are briefly discussed, and the developing orientation for further research is also pointed out.
  • 加载中
    1. [1]

      E Beutler. Science, 2004, 306(5704):2051~2053. 

    2. [2]

      C D Kaplan, J Kaplan. Chem. Rev., 2009, 109(10):4536~4552. 

    3. [3]

      X Bao, X Cao, X Nie et al. Sens. Actuat. B, 2015, 208:54~66. 

    4. [4]

      D Kaur, S Rajagopalan, J K Andersen. Brain Res., 2011, 1297:17~22.

    5. [5]

      H Kozlowski, A Janicka-Klos, J Brasun et al. Coord. Chem. Rev., 2009, 253(21):2665~2685.

    6. [6]

      S A Schneider, K P Bhatia. Ann. Neurol., 2010, 68(5):575~577. 

    7. [7]

      A Baral, K Basu, S Roy et al. ACS Sustain. Chem. Eng., 2016, 5(2):1628~1637

    8. [8]

      J Kratzer, J Boušek, R E Sturgeon et al. Anal. Chem., 2014, 86(19):9620~9625. 

    9. [9]

      B M Patel, P M Bhatt, N Gupta et al. Anal. Chim. Acta, 1979, 104(1):113~120. 

    10. [10]

      C Moor, T Lymberopoulou, V J Dietrich. Microchimica Acta, 2001, 136(3-4):123~128. 

    11. [11]

      L B Xia, Y L Wu, Z C Jiang et al. Int. J. Environ. Anal. Chem., 2003, 83(11):953~962. 

    12. [12]

      L Liu, Z Yun, B He et al. Anal. Chem., 2014, 86(16):8167~8175. 

    13. [13]

    14. [14]

      A Tong, Y Akama, S Tanaka. Analyst, 1990, 115(7):947~949. 

    15. [15]

      M Eddaoudi, D F Sava, J F Eubank et al. Chem. Soc. Rev., 2014, 44(1):228~249.

    16. [16]

      W G Lu, Z Y Gu, T F Liu et al. Chem. Soc. Rev., 2014, 43:5561~5593. 

    17. [17]

      B Wang, X L Lv, D Feng et al. J. Am. Chem. Soc., 2016, 138(19):6204~6216. 

    18. [18]

      Z Hu, K Tan, W P Lustig et al. Chem. Sci., 2014, 5(12):4873~4877. 

    19. [19]

      C X Yang, H B Ren, X P Yan. Anal. Chem., 2013, 85(15):7441~7446. 

    20. [20]

      R Lv, Z Chen, X Fu et al. J. Solid State Chem., 2018, 259:67~72. 

    21. [21]

      Z Xiang, C Fang, S Leng et al. J. Mater. Chem. A, 2014, 2(21):7662~7665. 

    22. [22]

      H Xu, J Gao, X Qian et al. J. Mater. Chem. A, 2016, 4(28):10900~10905. 

    23. [23]

      S Pal, P K Bharadwaj. Cryst. Growth Des., 2016, 16(10):5852~5858. 

    24. [24]

      W Sun, J Wang, G Zhang et al. RSC Adv., 2014, 4(98):55252~55255. 

    25. [25]

      X Y Dong, R Wang, J Z Wang et al. J. Mater. Chem. A, 2015, 3(2):641~647. 

    26. [26]

      H Xu, Y Dong, Y Wu et al. J. Solid State Chem., 2018, 258:441~446. 

    27. [27]

      X H Zhou, L Li, H H Li et al. Dalton Transac., 2013, 42(34):12403~12409. 

    28. [28]

      Q Tang, S Liu, Y Liu et al. Inorg. Chem., 2013, 52(6):2799~2801. 

    29. [29]

      H Xu, H C Hu, C S Cao et al. Inorg. Chem., 2015, 54(10):4585~4587. 

    30. [30]

      J Li, J J Zhu. Analyst, 2013, 138(9):2506~2515. 

    31. [31]

      S Y Lim, W Shen, Z Gao et al. Chem. Soc. Rev., 2015, 44(1):362~381. 

    32. [32]

      Y Wang, A Hu. J. Mater. Chem. C, 2014, 2(34):6921~6939. 

    33. [33]

      J Ju, W Chen. Biosens. Bioelectron., 2014, 58(10):219~225.

    34. [34]

      S Li, Y Li, J Cao et al. Anal. Chem., 2014, 86(20):10201~10207. 

    35. [35]

      L Xu, W Mao, J Huang et al. Sens. Actuat. B, 2016, 230(1):54~60.

    36. [36]

      T T Xu, J X Yang, J M Song et al. Sens. Actuat. B, 2017, 243:863~872. 

    37. [37]

      G Gao, Y W Jiang, H R Jia et al. Carbon, 2018, 134:232~243. 

    38. [38]

      F Yan, F Zu, J Xu et al. Sens. Actuat. B, 2019, 287:231~240. 

    39. [39]

      R Jin. Nanoscale, 2010, 2(3):343~362.

    40. [40]

      H Qian, M Zhu, Z Wu et al. Acc. Chem. Res., 2012, 45(9):1470~1479. 

    41. [41]

      L Shang, S Dong, G U Nienhaus. Nano Today, 2011, 6(4):401~418. 

    42. [42]

      L Zhang, E Wang. Nano Today, 2014, 9(1):132~157. 

    43. [43]

      Q Zhao, S Chen, L Zhang et al. Anal. Chim. Acta, 2014, 852:236~243. 

    44. [44]

      J Jiang, P Gao, Y Zhang et al. Talanta, 2017, 174:44~51. 

    45. [45]

      H Li, H Huang, J J Feng et al. J. Colloid Interf. Sci., 2017, 506:386~392. 

    46. [46]

      M I Halawa, F Wu, A Nsabimana et al. Sens. Actuat. B, 2018, 257:980~987. 

    47. [47]

      A Baral, K Basu, S Roy et al. ACS Sustain. Chem. Eng., 2016, 5(2):1628~1637.

    48. [48]

      E Bozkurt, M Arık, Y Onganer. Sens. Actuat. B, 2015, 221:136~147. 

    49. [49]

      S Bishnoi, M D Milton. J. Photoch. Photobio. A, 2017, 335:52~58. 

    50. [50]

      M Maniyazagan, C Rameshwaran, R Mariadasse et al. Sens. Actuat. B, 2017, 242:1227~1238. 

    51. [51]

      C Lu, J Cao, Y Cheng et al. Sens. Actuat. B, 2018, 255:3102~3107. 

    52. [52]

      F Gai, T Zhou, Y Liu et al. J. Mater. Chem. A, 2015, 3(5):2120~2127. 

    53. [53]

      F Song, C Yang, H Liu et al. Analyst, 2019, 144(9):3094~3102. 

    54. [54]

      K Zheng, K L Lou, C H Zeng et al. Photochem. Photobiol., 2015, 91(4):814~818. 

    55. [55]

      W Ding, H Zhang, J Xu et al. J. Polym. Sci. Pol. Chem., 2016, 54(23):3694~3700. 

    56. [56]

    57. [57]

      R F Bogale, Y Chen, J Ye et al. Sens. Actuat. B, 2017, 245:171~178. 

    58. [58]

      Y Deng, W Niu, Z Wang et al. Sens. Actuat. B, 2017, 238:613~618. 

    59. [59]

      C Chen, X Zhang, P Gao et al. J. Solid State Chem., 2018, 258:86~92 

    60. [60]

      C Y Zhang, J X Luo, L J Ou et al. Chem. Eur. J., 2018, 24(12):3030~3037. 

    61. [61]

      C Y Zhang, J X Luo, W J Li et al. Macromol. Chem. Phys., 2018, 219(24):1800403. 

    62. [62]

    63. [63]

      X Sun, Y Liu, G Shaw et al. ACS Appl. Mater. Interf., 2015, 7(24):13189~13197. 

    64. [64]

      M Ali, S Chen, H Cavaye et al. Sens. Actuat. B, 2015, 210:550~557. 

    65. [65]

      J Sun, P Xue, J Sun et al. J. Mater. Chem. C, 2015, 3(34):8888~8894. 

    66. [66]

      S Achelle, J Rodríguez-Lǒpez, C Katan et al. J. Phys. Chem. C, 2016, 120(47):26986~26995. 

    67. [67]

      W Mi, Z Qu, J Sun et al. Dyes Pigm., 2018, 150:207~215. 

  • 加载中
    1. [1]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    6. [6]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    7. [7]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    8. [8]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    11. [11]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    12. [12]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    13. [13]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    14. [14]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    15. [15]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    16. [16]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    17. [17]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    18. [18]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

Metrics
  • PDF Downloads(16)
  • Abstract views(871)
  • HTML views(198)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return