Citation: Zhang Aiqin, Wang Man, Zhang Hui, Jin Jun, Shen Gangyi. Advances in Label-Free Optical Biosensor[J]. Chemistry, ;2018, 81(1): 21-28, 44. shu

Advances in Label-Free Optical Biosensor

Figures(11)

  • Label-free optical biosensor has been widely studied and applied to the research fields including chemistry, pharmacy and biology associated with life science recently, due to its key features such as label-free of target molecule, dynamic monitoring, non-destructive detection and so on. This article mainly focuses on the current development of four representative kinds of label-free optical biosensors, including surface plasmon resonance biosensor, optical waveguide light mode spectroscopy biosensor, spectroscopic ellipsometry biosensor, and reflectometry interference spectroscopy biosensor. In addition to the introduction of the instrument structure and mechanism, method development, and applications in various fields, the advantages and shortcomings of these methods are discussed, which may illuminate the future development.
  • 加载中
    1. [1]

      S K Arya, C C Wong, Y J Jeon et al. Chem. Rev., 2015, 115(11):5116~5158. 

    2. [2]

      X Wang, J Hao. Sci. Bull., 2016, 61(16):1281~1295. 

    3. [3]

      J Kirsch, C Siltanen, Q Zhou et al. Chem. Soc. Rev., 2013, 42:8733~8768 

    4. [4]

      X Wang, O S Wolfbeis. Anal. Chem., 2016, 88:203~227. 

    5. [5]

      O Bleher, A Schindler, M X Yin et al. Anal. Bioanal. Chem., 2014, 406:3305~3314. 

    6. [6]

      J K Chen, G Y Zhou, C J Chang et al. Sens. Actuat. B, 2014, 194:10~18. 

    7. [7]

      F Chiavaioli, P Biswas, C Trono et al. Anal. Chem., 2015, 87:12024~12031. 

    8. [8]

      M Brändén, S Dahlin, F Höök. ChemPhysChem, 2008, 9(11):2480~2485.

    9. [9]

      M Citartan, S C B Gopinath, J Tominaga et al. Analyst, 2013, 138:3576~3592. 

    10. [10]

      K S Mun, S D Alvarez, W Y Choi et al. ACS Nano, 2010, 4(4):2070~2076. 

    11. [11]

      B Liedberg, C Nylander, I Lunström. Sensor. Actuat., 1983, 4:299~304. 

    12. [12]

      J Homola. Chem. Rev., 2008, 108(2):462~493. 

    13. [13]

       

    14. [14]

      Y Yanase, T Hiragun, K Ishiiet al. Sensors, 2014, 14:4948~4959. 

    15. [15]

       

    16. [16]

      P Singh. Sensor. Actuat. B, 2016, 229:110~130. 

    17. [17]

      T Xue, S Yu, X Zhang et al. Sci. Rep., 2016, 6(2):77~80.

    18. [18]

      A R Ferhan, J A Jackman, N J Cho. Anal. Chem., 2017, 89(7):4301~4308. 

    19. [19]

       

    20. [20]

      J Chen, J Y Xu, Y Chen. Chin. Chem. Lett., 2013, 24:651~653. 

    21. [21]

      C J Liu, X Wang, J Y Xu et al. Anal. Chem., 2016, 88(20):10011~10018. 

    22. [22]

      F Hu, J Xu, Y Chen. Anal. Chem., 2017, 89(18):10071~10077. 

    23. [23]

      C Katz, H Benyamini, S Rotem et al. PNAS, 2008, 105(34):12277~12282. 

    24. [24]

       

    25. [25]

       

    26. [26]

      R Gamsjaeger, R Kariawasam, L H Bang et al. Anal. Biochem., 2013, 440:178~185. 

    27. [27]

      S Song, A H Nguyen, J U Lee et al. Analyst, 2016, 141:2493~2501. 

    28. [28]

       

    29. [29]

       

    30. [30]

      F Melaine, M Saad, S Faucher et al. Anal. Chem., 2017, 89:7802~7807. 

    31. [31]

      L P Song, L Zhang, Y J Huang et al. Sci. Rep., 2017, 7:3288. 

    32. [32]

      Y Q Xia, R X Su, R L Huang et al. Biosens. Bioelectron., 2016, 92:266~272.

    33. [33]

      D C Li, B Y Lu, R Zhu et al. Biomicrofluidics, 2016, 10(1):011913. 

    34. [34]

      G Ertürk, H Özen, M A Tümer et al. Sens. Actuat. B, 2016, 224:823~832. 

    35. [35]

      C Ribaut, V Voisin, V Malachovská et al. Biosens. Bioelectron., 2016, 77:315~322. 

    36. [36]

      R Konradi, M Textor, E Reimhult. Biosensors, 2012, 2:341~376. 

    37. [37]

      W Lukosz. Sens. Actuat. B, 1995, 29(1-3):37~50. 

    38. [38]

       

    39. [39]

      F Kehl, G Etlinger, T E Gartmann et al. Sens. Actuat. B, 2016, 226:135~143. 

    40. [40]

      X W Zhang, L Liu, L Xu. Appl. Phys. Lett., 2014, 104(3):033703. 

    41. [41]

       

    42. [42]

       

    43. [43]

      N Orgovan, R Salánki, N Sándor et al. Biosens. Bioelectron., 2014(54):339~344. 

    44. [44]

      J B Madsen, B Svensson, M Abou Hachem et al. Langmuir, 2015, 31(30):8303~8309. 

    45. [45]

      M Vert. Eur. Polym. J., 2015, 68:516~525. 

    46. [46]

      L Leclercq, E Modena, M J Vert. Biomater Sci. Polym. Ed., 2013, 24:1499~518. 

    47. [47]

       

    48. [48]

       

    49. [49]

      N Adányi, K Majer-Baranyi, A Nagy et al. Sens. Actuat. B, 2013, 176:932~939. 

    50. [50]

      K Majer-Baranyi, A Székács, I Szendrö et al. Eur. Food Res. Technol., 2011 233:1041~1047. 

    51. [51]

      M Kroslak, D Morbidelli. Chem. Pap., 2014, 68(12):1755~1766.

    52. [52]

      H Szalontai, A Nóra, A Kiss. New Biotechnol., 2015, 31:395~401.

    53. [53]

      N Kim, W-Y Kim. Food Chem., 2015, 169:211~217. 

    54. [54]

      K Majer-Baranyi, N Adányi, A Nagy et al. Environ. Anal. Chem., 2015, 95:481~493. 

    55. [55]

      X Wu, P R Matthew, M Joseph et al. Colloid. Surf. B, 2015, 130:69~76. 

    56. [56]

      P Beatrix, K Sandor, P Daniel. J. Am. Chem. Soc., 2014, 30:13478~13482.

    57. [57]

      Z W Wu, Q J Liu, L W Wu et al. Adv. Sci. Lett., 2011, 4:516~521. 

    58. [58]

      P Liu, Y Zhang, S T Martin. Environ. Sci. Technol., 2013, 47:13594~13601. 

    59. [59]

      A Rothen. Rev. Sci. Instrum., 1945, 16(2):26~30. 

    60. [60]

      S Engmann, V Turkovic, H Hoppe et al. J. Phys. Chem., 2013, 117(47):25205~25210.

    61. [61]

      H Gu, X Chen, H Jiang et al. J. Opt., 2016, 18:025702. 

    62. [62]

      A Furchner, G Sun, H Ketelsen et al. Analyst, 2015, 140:1791~1797 

    63. [63]

      M K Mustafa, A Nabok, D Parkinson et al. Biosens. Bioelectron., 2013, 26(4):1332~1336.

    64. [64]

      X Zhao, F Pan, B Cowsill et al. Langmuir, 2011, 27(12):7654~7662. 

    65. [65]

      C Qi, J Z Duan, Z H Wang et al. Biomed. Microdevices, 2006, 8(3):247~253. 

    66. [66]

      Y Niu, J Zhuang, X Yan et al. Thin Solid Films, 2011, 59(9):2768~2771.

    67. [67]

      C Qi, Y Lin, J Feng et al. Virus Res., 2009, 140:79~84. 

    68. [68]

      H G Zhang, C Qi, Z Wang et al. Clin. Chem., 2005, 51(6):1038~1040. 

    69. [69]

      G Guzman, S M Bhaway, T Nugay et al. Langmuir, 2017, 33(11):2900~2910. 

    70. [70]

      S Engmann, V Turkovic, H Hoppe et al. J. Phys. Chem., 2013, 117(47):25205~25210.

    71. [71]

      N Leick, J W Weber, A J M Mackus et al J. Phys. D:Appl. Phys., 2016, 49:115504. 

    72. [72]

      G J Lee, E H Choi, W K Ham et al. Opt. Mater. Express, 2016, 6(3):767~781. 

    73. [73]

      H He, D A Andersson, D D Allred et al J. Phys. Chem. C, 2013, 117:16540~16551. 

    74. [74]

      K S Tseng, Y L Lo. Opt. Mater. Express, 2014, 4(1):43~56. 

    75. [75]

      P Liu, Y Zhang. Environ. Sci. Technol., 2013, 47:13594~13601. 

    76. [76]

      A G Al-Rubaye, A Nabok, A Tsargorodska. Sens. Bio-Sens. Res., 2017, 12:30~35. 

    77. [77]

      G Gauglitz, W Nahm. J Fresenius. Anal. Chem., 1991, 341(3-4):279~283. 

    78. [78]

    79. [79]

      K Urmann, J-G Walter, E Segal. Anal. Chem., 2015, 87:1999~2016. 

    80. [80]

      K Urmann, S Arshavsky-Graham, J G Walter et al. Analyst, 2016, 141:5432~5440. 

    81. [81]

      Y Kurihara, T Sawazumi, T Takeuchi. Analyst, 2014, 139:6016~6021. 

    82. [82]

      H W Choi, Y Sakata, Y Kurihara et al. Anal. Chim. Acta, 2012, 728:64~68. 

    83. [83]

      Y Kurihara, M Takama, M Masubuchi et al. Biosens. Bioelectron., 2013, 40:247~251. 

    84. [84]

      Y Kurihara, M Takama, T Sekiya et al. Langmuir, 2012, 28:13609~13615. 

    85. [85]

      Z Li, Y Tang, L Zhang et al. Lab Chip, 2014, 14:333~341. 

    86. [86]

      S Gao, B Hu, X Zheng et al. Biosens. Bioelectron., 2016, 79:938~944. 

    87. [87]

      Y Tang, Z Li, Q Luo et al. Biosens. Bioelectron., 2016, 79:715~720. 

    88. [88]

      Y Tang, Z Li, J Liu et al. Anal. Chem., 2013, 85:2787~2794. 

    89. [89]

      S Rau, G Gauglitz. Anal. Bioanal. Chem., 2012, 402(1):529~536. 

    90. [90]

      D Sebök, I Dékany. Sens. Actuat. B, 2015, 206:435~442. 

    91. [91]

    92. [92]

      Y Huang, X Lu, W Qian et al. Acta Biomater., 2010, 6(6):2083~2090. 

    93. [93]

      K Peter, F Kehl, E Ehrentreich-Förster et al. Biosens. Bioelectron., 2014, 58:287~307. 

    94. [94]

      A Garcíamarín, J M Abad, E Ruiz et al. Anal. Chem., 2014, 86:4969~4976 

    95. [95]

      C J Cirák, K Bombarová. Mater. Today:Proceed., 2015, 2(1):70~76. 

    96. [96]

      M Trevor, T P Mcnamara, F Fan et al. ACS Appl. Mater. Interf., 2015, 7(45):25270~25280. 

    97. [97]

      T Hu, S Wang, C Chen et al. Anal. Chem., 2012, 84:924~930. 

    98. [98]

      Y Zheng, Y Cheng, F Yang et al. Anal. Chem., 2014, 86:3849~3855. 

    99. [99]

      T Hu, S Wang, C Chen et al. Anal. Chem., 2017, 89:2606~2612. 

    100. [100]

      J Breault-Turcot, P Chaurand, J-F Masson. Anal. Chem., 2014, 86:9612~9619. 

    101. [101]

      S A Meyer, B Auguié, E C L Ru et al. J. Phys. Chem. A, 2012, 116(3):1000~1007. 

    102. [102]

      E Finot, L Markey, F Hane et al. Colloid Surf. B, 2013, 104(1):289~293.

  • 加载中
    1. [1]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    2. [2]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    3. [3]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    4. [4]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    5. [5]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    6. [6]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    7. [7]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    8. [8]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    9. [9]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    10. [10]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    11. [11]

      Hongmei Chai Yixia Ren Xiangyang Hou Long Tang Jiawei Xie . 智能手机光传感的“丙酮碘化反应”实验改进. University Chemistry, 2025, 40(6): 193-200. doi: 10.12461/PKU.DXHX202407086

    12. [12]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    13. [13]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    14. [14]

      Xian BISisi WANGJinyue ZHANGYujia PENGZhen SHENHua LU . Discovery, development, and perspectives of circularly polarized luminescent materials based on β-isoindigo skeletons. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1049-1057. doi: 10.11862/CJIC.20240456

    15. [15]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    16. [16]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    17. [17]

      Shangwen Luo Jianguo Fang Yanlong Yang Shihui Dong . 化学生物学课程双语教学实践与探索. University Chemistry, 2025, 40(8): 124-129. doi: 10.12461/PKU.DXHX202410096

    18. [18]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    19. [19]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    20. [20]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

Metrics
  • PDF Downloads(31)
  • Abstract views(6135)
  • HTML views(835)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return