Citation: GUO Shu-peng, WANG Min, WANG Jun-gang, MA Zhong-yi, JIA Li-tao, HOU Bo, LI De-bao. Study on the F-T reaction performance of Co/Al2O3-SiO2 catalyst[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(2): 198-203. shu

Study on the F-T reaction performance of Co/Al2O3-SiO2 catalyst

  • Corresponding author: MA Zhong-yi, mazhgyi@sxicc.ac.cn LI De-bao, dbli@sxicc.ac.cn
  • Received Date: 5 September 2017
    Revised Date: 18 December 2017

    Fund Project: The project was supported by Shanxi Basic Research Fund (201601D021044, 201701D121037)Shanxi Basic Research Fund 201701D121037Shanxi Basic Research Fund 201601D021044

Figures(4)

  • The γ-Al2O3 modified with different content of SiO2 by impregnation method was used as supports to prepare Co/Al2O3 catalyst.The effects of SiO2 additives on phase structure of the cobalt-based catalysts, reduction behavior and the influence on the F-T synthesis performance were studied by using N2 adsorption, XRD, H2-TPR and XPS characterization methods and activity test.The results showed that with the introduction of SiO2, the interaction between support and cobalt was effectively weakened, thus the reducibility and catalytic activity of the catalysts were significantly improved.However, when the amount of SiO2 continued to increase, the reduction degree of the catalyst continued to improve, but the dispersion decreased by 32% at the same time.Compared with unmodified Co/Al2O3 catalyst, the activity of the catalyst remained basically unchanged.
  • 加载中
    1. [1]

      SUN Yu-han, CHEN Jian-gang, WANG Jun-gang, JIA Li-tao, HOU Bo, LI De-bao, ZHANG Juan. The development of cobalt-based catalysts for fischer-tropsch synthesis[J]. Chin J Catal, 2010,31(8):919-927.  

    2. [2]

      XING C, YANG G H, WANG D, ZENG C Y, JIN Y Z, YANG R Q, SUEHIRO Y, TSUBAKI N. Controllable encapsulation of cobalt clusters inside carbon nanotubes as effective catalysts for Fischer-Tropsch synthesis[J]. Catal Today, 2013,215:24-28. doi: 10.1016/j.cattod.2013.02.018

    3. [3]

      KHODAKOV A Y, CHU W, FONGARLAND P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chem Rev, 2007,107(5):1692-1744. doi: 10.1021/cr050972v

    4. [4]

      LI Jin-lin, WAN You-jun, ZHANG Yu-hua, XIONG Hai-feng. Studies on the reduction process of the supported cobalt catalysis for Fischer-Tropsch Synthesis[J]. J South-Cent Univ Nat(Nat Sci Ed), 2007,26(2):1-6.

    5. [5]

      ZHANG Y H, XIONG H F, LIEW K Y, LI J L. Effect of magnesia on alumina-supported cobalt Fischer-Tropsch synthesis catalysts[J]. J Mol Catal A:Chem, 2005,237(1/2):172-181.  

    6. [6]

      BAO A, LIEW K Y, LI J L. Fischer-Tropsch synthesis on CaO-promoted Co/Al2O3 catalysts[J]. J Mol Catal A:Chem, 2009,304(1/2):47-51.  

    7. [7]

      LI Jia-bo, LIN Quan. Supporter modification of Fischer-Tropsch cobalt catalyst[J]. Clean Coal Technol, 2015,21(1):65-68.  

    8. [8]

      PATERMARAKIS G, NICOLOPOULOS N. Catalysis ove porous anodic alumina film catalysts with different pore surface concentrations[J]. J Catal, 1999,187(2):311-320. doi: 10.1006/jcat.1999.2627

    9. [9]

      SUN X Y, ZHANG X J, ZHANG Y, TSUBAKI N. Reversible promotional effect of SiO2 modification to Co/Al2O3 catalyst for Fischer-Tropsch synthesis[J]. Appl Cata A:Gen, 2010,377(1/2):134-139.  

    10. [10]

      ARNOLDY P, MOULIJN J A. Temperature-programmed reductio of CoO/Al2O3 catalysts[J]. J Catal, 1985,93(1):38-54. doi: 10.1016/0021-9517(85)90149-6

    11. [11]

      KOGELBAUER A, GOODWIN J G, QUKACI R. Ruthenium promotion of Co/Al2O3 Fischer-Tropsch catalysts[J]. J Catal, 1996,160(1):125-133. doi: 10.1006/jcat.1996.0130

    12. [12]

      FAN L, YOKOTA K, FUJIMOTO K. Supercritical phase Fischer-Tropsch synthesis:Catalyst pore-size effect[J]. AIChE J, 1992,38(10):1639-1648. doi: 10.1002/(ISSN)1547-5905

    13. [13]

      SEXTON B A, HUGHES A E, TURNEY T W. An XPS and TPR study of the reduction of promoted cobalt-kieselguhr Fischer-Tropsch catalysts[J]. J Catal, 1986,97(2):390-406. doi: 10.1016/0021-9517(86)90011-4

    14. [14]

      GUERRERORUIZ A, SEPULVEDAESCRIBANO A, RODRIGUEZRAMOS I. Carbon monoxide hydrogenation over carbon supported cobalt or ruthenium catalysts:Promoting effects of magnesium, vanadium and cerium oxides[J]. Appl Catal A:Gen, 1994,120(1):71-83. doi: 10.1016/0926-860X(94)80334-X

    15. [15]

      GRASS M E, ZHANG Y, BUTCHER D R, PARK J Y, LI Y, BLUHM H, BRATLIE K M, ZHANG T, SOMORJAI G A. A reactive oxide overlayer on rhodium nanoparticles during CO oxidation and its size dependence studied by in situ ambient-pressure X-ray photoelectron spectroscopy[J]. Angew Chem Int Ed Eng, 2008,47(46):8893-8896. doi: 10.1002/anie.v47:46

    16. [16]

      PRIETO G, DE M M, CONCEPCION P, MURCIANO R, MURCIANO R, PERGHERS B C, MARTTINEZ A. Cobalt-catalyzed Fischer-Tropsch synthesis:Chemical nature of the oxide support as a performance descriptor[J]. ACS Catal, 2015,5(6):3323-3335. doi: 10.1021/acscatal.5b00057

    17. [17]

      BEZEMER G L, BITTER J H, KUIPERS H, OOSTERBEEK H, HOLEWIJN J E, XU X D, KAPTEIJN F, VANDILLEN A J, DEJONG K P. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts[J]. J Am Chem Soc, 2005,128(6):3956-3964.  

    18. [18]

      ZHANG Y, KOIKE M, TSUBAKI N. Preparation of alumina-silica bimodal pore catalysts for Fischer-Tropsch synthesis[J]. Catal Lett, 2005,99(3/4):193-198.  

  • 加载中
    1. [1]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    2. [2]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    5. [5]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    6. [6]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    7. [7]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    10. [10]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    11. [11]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    12. [12]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    13. [13]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    14. [14]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    15. [15]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    16. [16]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    17. [17]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    18. [18]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    19. [19]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    20. [20]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

Metrics
  • PDF Downloads(9)
  • Abstract views(2777)
  • HTML views(593)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return