Citation: ZHENG Ke, WANG Yong-zhao, HU Xiao-bo, WU Rui-fang, LIU Xiao-li, ZHAO Yong-xiang. Effect of reduction-oxidation pretreatment on the catalytic performance of Co3O4 catalyst in N2O decomposition[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(4): 455-463. shu

Effect of reduction-oxidation pretreatment on the catalytic performance of Co3O4 catalyst in N2O decomposition

  • Corresponding author: WANG Yong-zhao, catalyst@sxu.edu.cn
  • Received Date: 21 December 2018
    Revised Date: 25 February 2019

    Fund Project: the National Natural Science Foundation of China U1710221The project was supported by the National Natural Science Foundation of China (U1710221)

Figures(8)

  • In this paper, Co3O4 catalysts were prepared by the liquid precipitation method, and further was subjected to reduction-oxidation pretreatment to obtain Co3O4-RO. The catalysts were characterized by XRD, N2-physisorption, Raman, H2-TPR, XPS and O2-TPD. Their catalytic activities in N2O decomposition were tested on a fixed-bed continuous flow microreactor. The results show that both the crystallinity and the crystallite size of Co3O4-RO decrease in comparison with Co3O4. Especially the structural reconstruction resulted from the reduction-oxidation pretreatment weakens the Co-O bond and enhances the oxygen desorption capacity on the catalyst surface, which endows the Co3O4-RO a lower activation energy. Thus the catalytic activity of the Co3O4-RO in N2O decomposition increases significantly. At the same time, Co3O4-RO shows strong resistance to O2 (2% in feed)and H2O (2.3% in feed).
  • 加载中
    1. [1]

      United Nations Environment Programme. LIU Chong-ye. World Environmental Data Manual[M]. Beijing: China Science and Technology Press, 1990: 19-20.

    2. [2]

      XU Xiang-yang, GU Cheng, WANG Hong, ZHANG Yuan-yuan, KE Yan, ZHANG Cheng-le, WANG Ming-jin, SONG Bao-hua, LI Cui-qing. Catalytic performance of Co/Hβ in N2O decomposition[J]. J Fuel Chem Technol, 2014,42(7):877-883.  

    3. [3]

      RUSSO N, MESCIA D, FINO D, SARACCO G. N2O decomposition over perovskite catalysts[J]. Ind Eng Chem Res, 2007,46(12):4226-4231. doi: 10.1021/ie0612008

    4. [4]

      HUSSAIN M, PARVEEN A, FINO D, RUSSO N. Modified KIT-6 and SBA-15-spherical supported metal catalysts for N2O decomposition[J]. J Environ Chem Eng, 2013,1(3):164-174. doi: 10.1016/j.jece.2013.04.013

    5. [5]

      HERMES A C, HAMILTON S M, HOPKINS W S, HARDING D J, KERPAL C, MEIJER G, FIELICKE A, MACKENZIE S R. Effects of coadsorbed oxygen on the infrared driven decomposition of N2O on isolated Rh5+ clusters[J]. J Phys Chem Lett, 2011,2(24):3053-3057. doi: 10.1021/jz2012963

    6. [6]

      ZHU Y Y, WANG X D, WANG A Q, WU G T, WANG J H, ZHANG T. Identification of the chemical state of Fe in barium hexaaluminate using Rietveld refinement and 57Fe Mössbauer spectroscopy[J]. J Catal, 2011,283:149-160. doi: 10.1016/j.jcat.2011.08.001

    7. [7]

      ZHENG Li, WU Cang-cang, XU Xiu-feng. Catalytic decomposition of N2O over Mg-Co and Mg-Mn-Co composite oxides[J]. J Fuel Chem Technol, 2016,44(12):1494-1501. doi: 10.3969/j.issn.0253-2409.2016.12.013 

    8. [8]

      DOU Zhe, ZHANG Hai-jie, PAN Yan-fei, XU Xiu-feng. Catalytic decomposition of N2O over potassium-modified Cu-Co spinel oxides[J]. J Fuel Chem Technol, 2014,42(2):238-245.  

    9. [9]

      WANG Y Z, HU X B, ZHENG K, ZHANG H X, ZHAO Y X. Effect of precipitants on the catalytic activity of Co-Ce composite oxide for N2O catalytic decomposition[J]. React Kinet Mech Catal, 2018,123(2):707-721. doi: 10.1007/s11144-017-1293-9

    10. [10]

      ZHANG Y, WANG X D, ZHU Y Y, ZHANG T. Stabilization mechanism and crystallographic sites of Ru in Fe-promoted barium hexaaluminate under high-temperature condition for N2O decomposition[J]. Appl Catal B:Environ, 2013,129:382-393. doi: 10.1016/j.apcatb.2012.10.001

    11. [11]

      WANG Jun-ying, XIA Hai-an, JU Xiao-hua, FAN Feng-tao, FENG Zhao-chi, LI Can. Catalytic performance of different types of iron zeolites in N2O decomposition[J]. Chin J Catal, 2013,34(5):876-888.  

    12. [12]

      FRANKEN T, PALKOVITS R. Investigation of potassium doped mixed spinels CuxCo3-xO4 as catalysts for an efficient N2O decomposition in real reaction conditions[J]. Appl Catal B:Environ, 2015,176-177:298-305. doi: 10.1016/j.apcatb.2015.04.002

    13. [13]

      YAN L, REN T, WANG X L, JI D, SUO J S. Catalytic decomposition of N2O over MxCo1-xCo2O4 (M =Ni, Mg) spinel oxides[J]. Appl Catal B:Environ, 2003,45(2):85-90. doi: 10.1016/S0926-3373(03)00174-7

    14. [14]

      TAO F F, SHAN J J, NGUYEN L, WANG Z, ZHANG S, ZHANG L, WU Z, HUANG W, ZENG S, HU P. Understanding complete oxidation of methane on spinel oxides at a molecular level[J]. Nat Commun, 2015,6:1-10.  

    15. [15]

      XIE X W, LI Y, LIU Z Q, HARUTA M, SHWN W J. Low-temperature oxidation of CO catalysed by Co3O4 nanorods[J]. Nature, 2009,458(7239):746-749. doi: 10.1038/nature07877

    16. [16]

      HOU C P, XIA G F, SUN X, WU Y, JIN C, YAN Z N, LI M F, HU Z H, NIE H, LI D D. Thermodynamics of oxidation of an alumina-supported cobalt catalyst by water in F-T synthesis[J]. Catal Today, 2016,264:91-97. doi: 10.1016/j.cattod.2015.08.042

    17. [17]

      KONSOLAKIS M I. Recent advances on nitrous oxide (N2O) decomposition over non-noble metal oxide catalysts:Catalytic performance, mechanistic considerations and surface chemistry aspects[J]. ACS Catal, 2015,5:6397-6421. doi: 10.1021/acscatal.5b01605

    18. [18]

      WANG Y Z, HU X B, ZHENG K, WEI X H, ZHAO Y X. Effect of SnO2 on the structure and catalytic performance of Co3O4 for N2O decomposition[J]. Catal Commun, 2018,111:70-74. doi: 10.1016/j.catcom.2018.04.004

    19. [19]

      YU H B, WANG X P, WU X X, CHEN Y. Promotion of Ag for Co3O4 catalyzing N2O decomposition under simulatedreal reaction conditions[J]. Chem Eng J, 2018,334:800-808. doi: 10.1016/j.cej.2017.10.079

    20. [20]

      YU H B, TURSUN M, WANG X P, WU X X. Pb0.04Co catalyst for N2O decomposition in presence of impurity gases[J]. Appl Catal B:Environ, 2016,185:110-118. doi: 10.1016/j.apcatb.2015.12.011

    21. [21]

      KIM S H, NAM S W, LIM T H, LEE H I. Effect of pretreatment on the activity of Ni catalyst for CO removal reaction by water-gas shift and methanation[J]. Appl Catal B:Environ, 2008,81(1/2):97-104.  

    22. [22]

      SADYKOV V A, TIKHOV S F, TSYBULYA S V, KRYUKOVA G N, VENIAMINOV S A, KOLOMⅡCHUK V N, BULGAKOV N N, PAUKSHTIS E A, IVANOV V P, KOSHCHEEV S V, ZAIKOVSKⅡ V I, ISUPOVA L A, BURGINA L B. Role of defect structure in structural sensitivity of the oxidation reactions catalyzed by dispersed transition metal oxides[J]. J Mol Catal A:Chem, 2000,158(1):361-365. doi: 10.1016/S1381-1169(00)00105-9

    23. [23]

      YU Y B, TAKEI T, OHASHI H, HE H, ZHANG X L, HARUTA M. Pretreatments of Co3O4 at moderate temperature for CO oxidation at -80℃[J]. J Catal, 2009,267(2):121-128. doi: 10.1016/j.jcat.2009.08.003

    24. [24]

      YANG J, GUO J, WANG Y B. Reduction-oxidation pretreatment enhanced catalytic performance of Co3O4/Al2O3 over CO oxidation[J]. Appl Surf Sci, 2018,453:330-335. doi: 10.1016/j.apsusc.2018.05.103

    25. [25]

      HUSSAIN S T, LARACHI F. Surface modification of supported Ru:Mn/SiO2 Fischer-Tropsch synthesis catalysts[J]. J Trace Microprobe Tech, 2002,20(2):197-209. doi: 10.1081/TMA-120003724

    26. [26]

      CAI J, JIANG F, LIU X H. Exploring pretreatment effects in Co/SiO2 Fischer-Tropsch catalysts:Different oxidizing gases applied to oxidation-reduction process[J]. Appl Catal B:Environ, 2017,210:1-13. doi: 10.1016/j.apcatb.2017.03.036

    27. [27]

      WANG Jun-gang, LI De-bao, HUANG Wei, JIA Li-tao, SUN Zhi-qiang, LIU Bing, SUN Yu-han. Influence of reduction-oxidation pretreatment on the performance of bi-modal structure Co-based catalysts in Fischer-Tropsch synthesis[J]. J Fuel Chem Technol, 2012,40(4):441-446. doi: 10.3969/j.issn.0253-2409.2012.04.010 

    28. [28]

      SOUZA L K C D, ZAMIAN J R, FILHO G N D R, SOLEDADE L E B, SANTOS I M G D, SOUZA A G, SCHELLER T, ANGELICA R S, COSTA C E F D. Blue pigments based on CoxZn1-xAl2O4 spinels synthesized by the polymeric precursor method[J]. Dyes Pigm, 2009,81(3):187-192. doi: 10.1016/j.dyepig.2008.09.017

    29. [29]

      MAHAMMADUNNISA S K, AKANKSHA T, KRUSHNAMURTY K, SUBRAHMANYAM C H. Catalytic decomposition of N2O over CeO2 supported Co3O4 catalysts[J]. J Chem Sci, 2016,128(123):1795-1804.  

    30. [30]

      HOU X D, WANG Y Z, ZHAO Y X. Effect of CeO2 doping on structure and catalytic performance of Co3O4 catalyst for low-temperature CO oxidation[J]. Catal Lett, 2008,123:321-326. doi: 10.1007/s10562-008-9426-4

    31. [31]

      DOW W P, WANG Y P, HUANG T J. Yttria-stabilized zirconia supported copper oxide catalyst.1.Effect of oxygen vacancy of support on copper oxide reduction[J]. J Catal, 1996,160(2):155-170. doi: 10.1006/jcat.1996.0135

    32. [32]

      XIE P F, LUO Y J, MA Z, WANG L Y, HUANG C Y, YUE Y H, HUA W M, GAO Z. CoZSM-11 catalysts for N2O decomposition:Effect of preparation methods and nature of active sites[J]. Appl Catal B:Environ, 2015,170-171:34-42. doi: 10.1016/j.apcatb.2015.01.027

    33. [33]

      CHEN J, SHI W, LI J. Catalytic combustion of methane over cerium-doped cobalt chromite catalysts[J]. Catal Today, 2011,175(1):216-222. doi: 10.1016/j.cattod.2011.03.061

    34. [34]

      LEE Y N, LAGO R M, FIERRO J L G, CORTES V, SAPINA F, MARTINEZ E. Study of ceria-supported nickel catalyst and effect of yttria doping on carbon dioxide reforming of methane[J]. Appl Catal A:Gen, 2001,218(1/2):69-79.  

    35. [35]

      WANG K, CAO Y L, HU J D, LI Y Z, XIE J, JIA D Z. Solvent-free chemical approach to synthesize various morphological Co3O4 for CO oxidation[J]. Acs Appl Mater Inter, 2017,9(19):16128-16137. doi: 10.1021/acsami.7b01142

    36. [36]

      XUE L, ZHANG C B, HE H, TERAOKA Y. Catalytic decomposition of N2O over CeO2promoted Co3O4 spinel catalyst[J]. J Chin Rare Earth Soc, 2006,75(3):167-174.  

    37. [37]

      HUANG C D, ZHU Y Y, WANG X D, LIU X, WANG J H, ZHANG T. Sn promoted BaFeO3-δ catalysts for N2O decomposition:Optimization of Fe active centers[J]. J Catal, 2017,347:9-20. doi: 10.1016/j.jcat.2016.12.020

    38. [38]

      IVANOVA Y A, SUTORMINA E F, ISUPOVA I A, VOVK E I. Catalytic activity of the oxide catalysts based on Ni0.75Co2.25O4 modified with cesium cations in a reaction of N2O decomposition[J]. Kinet Catal, 2017,58(6):793-799. doi: 10.1134/S002315841705007X

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    3. [3]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    4. [4]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    5. [5]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    6. [6]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    7. [7]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    8. [8]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    9. [9]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    10. [10]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    13. [13]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332

    14. [14]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    15. [15]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    17. [17]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    18. [18]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    19. [19]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    20. [20]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

Metrics
  • PDF Downloads(6)
  • Abstract views(1048)
  • HTML views(139)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return