Citation: Taher Yousefi Amiri, Jafarsadegh Moghaddas. Reaction parameters influence on the catalytic performance of copper-silica aerogel in the methanol steam reforming[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(1): 84-90. shu

Reaction parameters influence on the catalytic performance of copper-silica aerogel in the methanol steam reforming

  • Corresponding author: Jafarsadegh Moghaddas, jafar.moghaddas@sut.ac.ir
  • Received Date: 8 August 2015
    Revised Date: 23 November 2015

Figures(7)

  • Steam reforming of methanol was carried out on the copper-silica aerogel catalyst. The effects of reaction temperature, feed rate, water to methanol molar ratio and carrier gas flow rate on the H2 production rate and CO selectivity were investigated. Methanol conversion was increased considerably in the range of about 240-300, after which it increased at a slightly lower rate. The used feed flow rate, steam to methanol molar ratio and carrier gas flow were 1.2-9.0 mL/h, 1.2-5.0 and 20-80 mL/min, respectively. Reducing the feed flow rate increased the H2 production rate. It was found that an increase in the water to methanol ratio and decreasing the carrier gas flow rate slightly increases the H2 production rate. Increasing the water to methanol ratio causes the lowest temperature in which CO formation was observed to rise, so that for the ratio of 5.0 no CO formation was detected in temperatures lower than 375 ℃. In all conditions, by approaching the complete conversion, increasing the main product concentration, increasing the temperature and contact time, and decreasing the steam to methanol ratio, the CO selectivity was increased. These results suggested that CO was formed as a secondary product through reverse water-gas shift reaction and did not participate in the methanol steam reforming reaction mechanism.
  • 加载中
    1. [1]

      JONES S D, HAGELIN-WEAVER H E. Steam reforming of methanol over CeO2-and ZrO2-promoted Cu-ZnO catalysts supported on nanoparticle Al2O3[J]. Appl Catal A: Gen, 2009,90(1/2):195-204.

    2. [2]

      FRANK B, JENTOFT F C, SOERIJANTO H, KRöHNERT J, SCHLÖGL R, SCHOMÖCKER R. Steam reforming of methanol over copper-containing catalysts: Influence of support material on microkinetics[J]. J Catal, 2007,246(1):177-192. doi: 10.1016/j.jcat.2006.11.031

    3. [3]

      AGRELL J, BIRGERSSON H, BOUTONNET M. Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: A kinetic analysis and strategies for suppression of CO formation[J]. J Power Sources, 2002,106(1/2):249-257.

    4. [4]

      SA S, SOUSA J M, MENDES A L. Steam reforming of methanol over a CuO/ZnO/Al2O3 catalyst part Ⅱ: A carbon membrane reactor[J]. Chem Eng Sci, 2011,66(22):5523-5530. doi: 10.1016/j.ces.2011.06.074

    5. [5]

      CLANCY P, BREEN J P, ROSS J R H. The preparation and properties of coprecipitated Cu-Zr-Y and Cu-Zr-La catalysts used for the steam reforming of methanol[J]. Catal Today, 2007,127(1/4):291-294.  

    6. [6]

      PURNAMAA H, GIRGSDIES F, RESSLER T, SCHATTKA J H, CARUSO R A, SCHOMACKERC R, SCHLÖGL R. Activity and selectivity of a nanostructured CuO/ZrO2 catalyst in the steam reforming of methanol[J]. Catal Lett, 2004,94(1):61-68.  

    7. [7]

      MONYANON S, LUENGNARUEMITCHAI A, PONGSTABODEE S. Optimization of methanol steam reforming over a Au/CuO-CeO2 catalyst by statistically designed experiments[J]. Fuel Process Technol, 2012,96:160-168. doi: 10.1016/j.fuproc.2011.12.024

    8. [8]

      TURCO M, CAMMARANO C, BAGNASCO G, MORETTI E, STORARO L, TALON A, LENARDA M. Oxidative methanol steam reforming on a highly dispersed CuO/CeO2/Al2O3 catalyst prepared by a single-step method[J]. Appl Catal B: Environ, 2009,91(1/2):101-107.

    9. [9]

      SZIZYBALSKI A, GIRGSDIES F, RABIS A, WANG Y, NIEDERBERGER M, RESSLER T. In situ investigations of structure-activity relationships of a Cu/ZrO2 catalyst for the steam reforming of methanol[J]. J Catal, 2005,233(2):297-307. doi: 10.1016/j.jcat.2005.04.024

    10. [10]

      LINDSTRRÖM B, PETTERSSON L J, MENON P G. Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on alumina for methanol reforming for fuel cell vehicles[J]. Appl Catal A: Gen, 2002,234(1/2):111-125.  

    11. [11]

      CONANT T, KARIM A M, LEBARBIER V, WANG Y, GIRGSDIES F, SCHLOGL R, DATYE A. Stability of bimetallic Pd-Zn catalysts for the steam reforming of methanol[J]. J Catal, 2008,257(1):64-70. doi: 10.1016/j.jcat.2008.04.018

    12. [12]

      CHIN Y H, DAGLE R, HU J, DOHNALKOVA A C, WANG Y. Steam reforming of methanol over highly active Pd/ZnO catalyst[J]. Catal Today, 2002,77(1/2):79-88.  

    13. [13]

      TAKEZAWA N, IWASA N. Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals[J]. Catal Today, 1997,36(1):45-56. doi: 10.1016/S0920-5861(96)00195-2

    14. [14]

      UDANI P P C, GUNAWARDANA P V D S, LEE H C, KIM D H. Steam reforming and oxidative steam reforming of methanol over CuO-CeO2 catalysts[J]. Int J Hydrogen Energy, 2009,34(18):7648-7655. doi: 10.1016/j.ijhydene.2009.07.035

    15. [15]

      MATSUMURA Y, ISHIBE H. High temperature steam reforming of methanol over Cu/ZnO/ZrO2 catalysts[J]. Appl Catal B: Environ, 2009,91(1/2):524-532.  

    16. [16]

      TAKEZAWA N, KOBAYASHI H, HIROSE A, SHIMOKAWABE M, TAKAHASHI K. Steam reforming of methanol on copper-silica catalysts; effect of copper loading and calcination temperature on the reaction[J]. Appl Catal, 1982,4(2):127-134. doi: 10.1016/0166-9834(82)80243-1

    17. [17]

      MATSUMURA Y, ISHIBE H. Selective steam reforming of methanol over silica-supported copper catalyst prepared by sol-gel method[J]. Appl Catal B: Environ, 2009,86(3/4):114-120.  

    18. [18]

      TAKAHASHI K, TAKEZAWA N, KOBAYASHI H. The mechanism of steam reforming of methanol over a copper-silica catalyst[J]. Appl Catal, 1982,2(6):363-366. doi: 10.1016/0166-9834(82)80154-1

    19. [19]

      DUNN B C, COLE P, COVINGTON D, WEBSTER M C, PUGMIRE R J, ERNST R D, EYRING E M, SHAH N, HUFFMAN G P. Silica aerogel supported catalysts for Fischer-Tropsch synthesis[J]. Appl Catal A: Gen, 2005,278(2):233-238. doi: 10.1016/j.apcata.2004.10.002

    20. [20]

      DOMINGUEZ M, TABOADA E, MOLINS E, LLORCA J. Co-SiO2 aerogel-coated catalytic walls for the generation of hydrogen[J]. Catal Today, 2008,138(3/4):193-197.  

    21. [21]

      YOUSEFI AMIRI T, MOGHADDAS J S. Cogeled copper-silica aerogel as a catalyst in hydrogen production from methanol steam reforming[J]. Int J Hydrogen Energy, 2015,40(3):1472-1480. doi: 10.1016/j.ijhydene.2014.11.104

    22. [22]

      PARK G G, SEO D J, PARK S H, YOON Y G, KIM C S, YOON W L. Development of microchannel methanol steam reformer[J]. Chem Eng Sci, 2004,101(1/3):87-92.  

    23. [23]

      DU X, SHEN Y, YANG L, SHI Y, YANG Y. Experiments on hydrogen production from methanol steam reforming in the microchannel reactor[J]. Int J Hydrogen Energy, 2002,37(17):12271-12280.  

    24. [24]

      LIN S S Y, THOMSON W J, HAGENSEN T J, HA S Y. Steam reforming of methanol using supported Mo2C catalysts[J]. Appl Catal A: Gen, 2007,318:121-127. doi: 10.1016/j.apcata.2006.10.054

    25. [25]

      MATSUMURA Y, ISHIBE H. Effect of zirconium oxide added to Cu/ZnO catalyst for steam reforming of methanol to hydrogen[J]. J Mol Catal A: Chem, 2011,345(1/2):44-53.  

    26. [26]

      JEONG H, KIM K I, KIM T H, KO C H, PARK H C, SONG I K. Hydrogen production by steam reforming of methanol in a micro-channel reactor coated with Cu/ZnO/ZrO2/Al2O3 catalyst[J]. J Power Sources, 2006,159(2):1296-1299. doi: 10.1016/j.jpowsour.2005.11.095

    27. [27]

      MATSUMURA Y, ISHIBE H. Suppression of CO by-production in steam reforming of methanol by addition of zinc oxide to silica-supported copper catalyst[J]. J Catal, 2009,268(2):282-289. doi: 10.1016/j.jcat.2009.09.026

    28. [28]

      HUANG G, LIAW B J, JHANG C J, CHEN Y Z. Steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts[J]. Appl Catal A: Gen, 2009,358(1):7-12. doi: 10.1016/j.apcata.2009.01.031

    29. [29]

      PURNAMA H, RESSLER T, JENTOFT R E, SOERIJANTO H, SCHLÖGL R, SCHOMÄCKER R. CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst[J]. Appl Catal A: Gen, 2004,259(1):83-94. doi: 10.1016/j.apcata.2003.09.013

    30. [30]

      SHISHIDO T, YAMAMOTO Y, MORIOKA H, TAKAKI K, TAKEHIRA K. Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol[J]. Appl Catal A: Gen, 2004,263(2):249-253. doi: 10.1016/j.apcata.2003.12.018

    31. [31]

      TAKAHASHI K, KOBAYASHI H, TAKEZAWA N. On the difference in reaction pathways of steam reforming of methanol over copper-silica and platinum catalysts[J]. Chem Lett, 1982,14(6):759-762.  

    32. [32]

      BASILE A, PARMALIANA A, TOSTI S, IULIANELLI A, GALLUCCI F, ESPRO C, SPOOREN J. Hydrogen production by methanol steam reforming carried out in membrane reactor on Cu/Zn/Mg-based catalyst[J]. Catal Today, 2008,137(1):17-22. doi: 10.1016/j.cattod.2008.03.015

  • 加载中
    1. [1]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    2. [2]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    3. [3]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    4. [4]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    5. [5]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    6. [6]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    7. [7]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    8. [8]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

    9. [9]

      Shaoming DongYiming NiuYinghui PuYongzhao WangBingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525

    10. [10]

      Fenglin WangChengwei KuangZhicheng ZhengDan WuHao WanGen ChenNing ZhangXiaohe LiuRenzhi Ma . Noble metal clusters substitution in porous Ni substrate renders high mass-specific activities toward oxygen evolution reaction and methanol oxidation reaction. Chinese Chemical Letters, 2025, 36(6): 109989-. doi: 10.1016/j.cclet.2024.109989

    11. [11]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332

    12. [12]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    13. [13]

      Xiujuan WangYijie WangLuyun CuiWenqiang GaoXiao LiHong LiuWeijia ZhouJingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031

    14. [14]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    15. [15]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    16. [16]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    17. [17]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    18. [18]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    19. [19]

      Di ZHANGTianxiang XIEXu HEWanyu WEIQi FANJie QIAOGang JINNingbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329

    20. [20]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

Metrics
  • PDF Downloads(0)
  • Abstract views(630)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return