Citation: WAND Li-wen, LI Feng-xu, LI Ming-feng, CHU Yang, CHEN Ji-xiang. Effect of H2S/H2 sulfuration temperature on performance of MoP/SiO2 catalyst for thioetherification[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(5): 621-628. shu

Effect of H2S/H2 sulfuration temperature on performance of MoP/SiO2 catalyst for thioetherification

  • Corresponding author: CHEN Ji-xiang, jxchen@tju.edu.cn
  • Received Date: 17 October 2018
    Revised Date: 23 March 2019

    Fund Project: The project was supported by the State Key Laboratory of Catalytic Materials and Reaction Engineering RIPP, SINOPECThe project was supported by the State Key Laboratory of Catalytic Materials and Reaction Engineering (RIPP, SINOPEC)

Figures(11)

  • The MoP/SiO2 catalyst was prepared from the supported Mo phosphate by the H2-TPR method and treated with 3%H2S/H2 at different temperatures. The as-prepared catalysts were characterized by means of XRD, HRTEM-EDX, XPS, NH3-TPD, ICP-AES and CO chemisorption and tested for the thioetherification of isoprene and n-butylmercaptan. The effects of sulfuration temperature on the MoP/SiO2 catalyst structure and thioetherification performance were investigated. The results showed that the MoP phase was still stable even at the sulfuration temperature of 400 ℃. As the sulfuration temperature increased, the acid amount of the catalysts increased while the surface metal site density decreased. As a result, in the thioetherification of isoprene and n-butylmercaptan, the C-S bond hydrogenolysis and the over-hydrogenation of isoprene were suppressed on the sulfurized catalysts, while the olefin polymerization was promoted. Relatively, the MoP/SiO2 catalyst sulfurized at 120 ℃ had better performance for the thioetherification and the selective hydrogenation of isoprene.
  • 加载中
    1. [1]

      BRUNET S, MEY D, PÉROT G, BOUCHY G, DIEHL F. On the hydrodesulfurization of FCC gasoline:A review[J]. Appl Catal A:Gen, 2005,278(2):143-172. doi: 10.1016/j.apcata.2004.10.012

    2. [2]

      SONGC . Anoverviewofnewapproachestodeepdesulfurizationforultra-cleangasoline, dieselfuelandjetfuel[J]. Catal Today, 2003,86(1):211-263.  

    3. [3]

      PETTITI I, BOTTO I L, CABELLO C I, COLONNA C, FATICANTI M, MINELLI G, PORTA P, THOMAS H J. Anderson-type heteropolyoxomolybdates in catalysis 2. EXAFS study on λ-Al2O3-supported Mo, Co and Ni sulfided phases as HDS catalysts[J]. Appl Catal A:Gen, 2001,220(1):113-121.

    4. [4]

      MENG Xiang-dong, ZHOU Hong-tao, SUN Shou-hua. Process selection of selective hydrodesulfurization unit of catalytic cracking gasoline[J]. Petrochem Technol Appl, 2014,32(4):332-336. doi: 10.3969/j.issn.1009-0045.2014.04.012

    5. [5]

      XIAO Zhao-jin, HUANG Xing-liang. Study of mercaptans and isoprene thioetherfication reaction on nickel catalyst[J]. J Mol Catal (China), 2005,19(4):280-284. doi: 10.3969/j.issn.1001-3555.2005.04.009

    6. [6]

      XIAO Zhao-jin, HUANG Xing-liang. Effect of preparation conditions on the catalytic properties of Ni/Al2O3 catalyst in the diene thioetherfication reaction[J]. Petrochem Technol, 2004,33(s1):381-382.  

    7. [7]

      XIAO Zhao-jin, HUANG Xing-liang, TONG Zong-wen. Effect of preparation conditions on the catalytic properties of Ni/Al2O3 catalyst in the diene thioetherfication reaction[J]. Pet Process Petrochem, 2006,37(5):24-28. doi: 10.3969/j.issn.1005-2399.2006.05.006

    8. [8]

      SHEN Zhi-bing, KE Ming, ZHANG Jun-tao, ZHANG Zhi-ping, LIANG Sheng-rong. Catalytic performance of Mo-Ni/Al2O3 for thioetherfication of FCC gasoline[J]. Acta Pet Sin(Pet Process Sect), 2015,31(6):1269-1274. doi: 10.3969/j.issn.1001-8719.2015.06.003

    9. [9]

      SHEN Z B, KE M, YU P, HU H Q, SONG Z Z, JIANG Q Z. Reaction mechanisms of thioetherification for mercaptans and olefins over sulfided Mo-Ni/Al2O3 catalysts[J]. J Mol Catal A:Chem, 2015,396:120-127. doi: 10.1016/j.molcata.2014.09.034

    10. [10]

      SHEN Z B, KE M, YU P, LIU S D, SONG Z Z, JIANG Q Z. Catalytic activities of mo-modified Ni/Al2O3 catalysts for thioetherification of mercaptans and di-olefins in fluid catalytic cracking naphtha[J]. Transition Met Chem, 2012,37(6):587-593. doi: 10.1007/s11243-012-9625-0

    11. [11]

      HUANG D Q, KE M, BAO X J, LIU H Y. Fe-promoted Ni/Al2O3 thioetherification catalysts with enhanced low temperature activity for removing mercaptans from liquefied petroleum gas[J]. Ind Eng Chem Res, 2016,55(5):1192-1201. doi: 10.1021/acs.iecr.5b03797

    12. [12]

      OYAMA S T. Novel catalysts for advanced hydroprocessing:Transition metal phosphides[J]. J Catal, 2003,216(1):343-352.  

    13. [13]

      OYAMA S T, GOTT T, ZHAO H Y, LEE Y K. Transition metal phosphide hydroprocessing catalysts:A review[J]. Catal Today, 2009,143(1):94-107.  

    14. [14]

      LEE Y K, OYAMA S T. Bifunctional nature of a SiO2 -supported Ni2P catalyst for hydrotreating:EXAFS and FTIR studies[J]. J Catal, 2006,239(2):376-389. doi: 10.1016/j.jcat.2005.12.029

    15. [15]

      CHEN J X, SHI H, LI L, LI K L. Deoxygenation of methyl laurate as a model compound to hydrocarbons on transition metal phosphide catalysts[J]. Appl Catal B:Environ, 2014,144(2):870-884.  

    16. [16]

      REN T Y, LI M F, CHU Y, CHEN J X. Thioetherification of isoprene and butanethiol on transition metal phosphides[J]. J Energy Chem, 2018,27(3):930-939. doi: 10.1016/j.jechem.2017.07.017

    17. [17]

      PHILLIPS D C, SAWHILL S J, SELF R, BUSSELL M E. Synthesis, characterization, and hydrodesulfurization properties of silica-supported molybdenum phosphide catalysts[J]. J Catal, 2002,207(2):266-273.  

    18. [18]

      CHEN J X, YANG Y, SHI H, LI M F, CHU Y, PAN Z Y, YU X B. Regulating product distribution in deoxygenation of methyl laurate on silica-supported Ni-Mo phosphides:Effect of Ni/Mo ratio[J]. Fuel, 2014,129(7):1-10.  

    19. [19]

      LI K L, WANG R J, CHEN J X. Hydrodeoxygenation of anisole over silica-supported Ni2P, MoP, and NiMoP catalysts[J]. Energy Fuels, 2011,25(3):854-863. doi: 10.1021/ef101258j

    20. [20]

      ZHANG Z N, TANG M X, CHEN J X. Effects of P/Ni ratio and Ni content on performance of λ-Al2O3-supported nickel phosphides for deoxygenation of methyl laurate to hydrocarbons[J]. Appl Surf Sci, 2016,360(4):353-364.  

    21. [21]

      SUN F X, WU W C, WU Z L, GUO J, WEI Z B, YANG Y X, JIANG Z X, TIAN F P, LI C. Dibenzothiophene hydrodesulfurization activity and surface sites of silica-supported MoP, Ni2P, and NiMoP catalysts[J]. J Catal, 2004,228(2):298-310. doi: 10.1016/j.jcat.2004.09.002

    22. [22]

      WU Z L, SUN F X, WU W C, FENG Z C, LIANG C H, WEI Z B, LI C. On the surface sites of MoP/SiO2 catalyst under sulfiding conditions:Ir spectroscopy and catalytic reactivity studies[J]. J Catal, 2004,222(1):41-52.  

    23. [23]

      BAI J, LI X, WANG A J, PRINS R WANG Y. Different role of H2S and dibenzothiophene in the incorporation of sulfur in the surface of bulk MoP during hydrodesulfurization[J]. J Catal, 2013,300(3):197-200.  

    24. [24]

      SHEN Z B, KE M, YU P, HU H Q, SONG Z Z, JIANG Q Z. Reaction mechanisms of thioetherification for mercaptans and olefins over sulfided Mo-Ni/Al2O3catalysts[J]. J Mol Catal A:Chem, 2015,396:120-127. doi: 10.1016/j.molcata.2014.09.034

    25. [25]

      WILSON R L, KEMBALL C. Catalytic reactions of methyl mercaptan on disulfides of molybdenum and tungsten[J]. J Catal, 1964,3(5):426-437. doi: 10.1016/0021-9517(64)90145-9

    26. [26]

      ZHOU Zi-yuan, HUANG Xing-liang, ZHANG Yan, LI Jian. Study on the acid catalysts for diene thioetherification[C]//National Youth Catalysis Conference. Beijing: China Petrochemical Press, 2007.

  • 加载中
    1. [1]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    2. [2]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    3. [3]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    4. [4]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    5. [5]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    7. [7]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    10. [10]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    11. [11]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    12. [12]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    13. [13]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    14. [14]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    15. [15]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    18. [18]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    19. [19]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    20. [20]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

Metrics
  • PDF Downloads(7)
  • Abstract views(657)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return