Citation: JING Jie-ying, WANG Shi-dong, ZHANG Xue-wei, LI Qing, LI Wen-ying. Influence of Ca/Al molar ratio on structure and catalytic reforming performance of Ni/CaO-Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(8): 956-962. shu

Influence of Ca/Al molar ratio on structure and catalytic reforming performance of Ni/CaO-Al2O3 catalyst

  • Corresponding author: JING Jie-ying, jingjieying@tyut.edu.cn LI Wen-ying, ying@tyut.edu.cn
  • Received Date: 9 May 2017
    Revised Date: 8 June 2017

    Fund Project: The project was supported by National Natural Science Foundation of China 21406155Shanxi Scholarship Council of China 2016-028The project was supported by National Natural Science Foundation of China U1361202Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi 164010121-SThe project was supported by National Natural Science Foundation of China (21406155, U1361202), Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi (164010121-S) and Shanxi Scholarship Council of China (2016-028)

Figures(6)

  • CO2 enhanced sorption methane steam reforming for hydrogen production is a potential approach to economically provide hydrogen and to reduce CO2 emission. The key point for this process is to develop a composite catalyst with high catalytic and adsorptive capacity. Considering the tunable structure of hydrotalcite-like compounds, co-precipitation method was employed to synthesize Ni/CaO-Al2O3 composite catalysts by varying the molar ratio of Ca to Al. The results show that the specific surface area and Ni dispersion of the as-synthesized composite catalysts are greatly influenced by molar ratio of Ca to Al, which derives from the variable interaction between Ni and the support. When the molar ratio of Ca to Al is 3, the composite catalyst obtains a specific surface area of 12.9 m2/g and Ni dispersion of 1.07%. Catalytic evaluation shows that the composite catalyst possesses a H2 concentration of 95% and a CH4 conversion of 88%, and H2 concentration exceeds 93% even after 10 cyclic runs.
  • 加载中
    1. [1]

      HAN C, HARRISO D P. Simultaneous shift reaction and carbon dioxide separation for the direct production of hydrogen[J]. Chem Eng Sci, 1994,4924:5875-5885.  

    2. [2]

      FENG H Z, LAN P Q, WU S F. A study on the stability of a NiO-CaO/Al2O3 complex catalyst by La2O3 modification for hydrogen production[J]. Int J Hydrogen Energy, 2012,37(19):14161-14166. doi: 10.1016/j.ijhydene.2012.06.099

    3. [3]

      ZHANG Tao. Study on composite modification of CaO-based sorbent[D]. Shanghai: East China University of Science and Technology, 2012. 

    4. [4]

      MARTI N I, ROMANO M C, CHIESA P, GRASA G, MURILLO R. Hydrogen production through sorption enhanced steam reforming of natural gas: Thermodynamic plant assessment[J]. Int J Hydrogen Energy, 2013,38(35):15180-15199. doi: 10.1016/j.ijhydene.2013.09.062

    5. [5]

      LI Ting-yu. The modification of CaO-based sorbents used for sorption enhanced methane steam forming[D]. Taiyuan: Taiyuan University of technology, 2016. 

    6. [6]

      LINDBORG H, JAKOBSEN H A. Sorption enhanced steam methane reforming process performance and bubbling fluidized bed reactor design analysis by use of a two-fluid model[J]. Ind Eng Chem Res, 2009,48(3):1332-1342. doi: 10.1021/ie800522p

    7. [7]

      SOLSVIK J, SANCHEZ R A, CHAO Z, JAKOBSEN H A. Simulations of steam methane reforming/sorption-enhanced steam methane reforming bubbling fluidized bed reactors by a dynamic one-dimensional two-fluid model: Implementation issues and model validation[J]. Ind Eng Chem Res, 2013,52(11):4202-4220. doi: 10.1021/ie303348r

    8. [8]

      RADFARNIA H R, ILLIUTA M C. Hydrogen production by sorption-enhanced steam methane reforming process using CaO-Zr/Ni bifunctional sorbent-catalyst[J]. Chem Eng Process, 2014,86:96-103. doi: 10.1016/j.cep.2014.10.014

    9. [9]

      CHANBURANASIRI N, RIBEIRO A M, RODRIGUES A E, AMORNCHAI A, NAVADOL L, PIYASAN P, SUTTICHAI A. Hydrogen production via sorption enhanced steam methane reforming process using Ni/CaO multifunctional catalyst[J]. Ind Eng Chem Res, 2011,50(24):69-86.  

    10. [10]

      RADFARNIA H R, ILIUTA M C. Development of Al-stabilized CaO-nickel hybrid sorbent–catalyst for sorption-enhanced steam methane reforming[J]. Chem Eng Sci, 2014,109(16):212-219.  

    11. [11]

      CESARIO M R, BARROS B S, COURSON C, MELO D M A, KIENNEMANN A. Catalytic performances of Ni-CaO-mayenite in CO2 sorption enhanced steam methane reforming[J]. Fuel Process Technol, 2015,131:247-253. doi: 10.1016/j.fuproc.2014.11.028

    12. [12]

      XU P, ZHOU Z, ZHAO C, CHENG Z. Ni/CaO-Al2O3 bifunctional catalysts for sorption-enhanced steam methane reforming[J]. AICHE J, 2015,60(10):3547-3556.  

    13. [13]

      PHROMPRASIT J, POWELL J, WONGSAKULPHASAKUPHASATCH S, WORAPON K, PALANG B, SUTTICHAI A. Activity and stability performance of multifunctional catalyst (Ni/CaO and Ni/Ca12Al14O33-CaO) for bio-hydrogen production from sorption enhanced biogas steam reforming[J]. Int J Hydrogen Energy, 2016,41(18):7318-7331. doi: 10.1016/j.ijhydene.2016.03.125

    14. [14]

      WU K, JING J, LI W. Calcination temperature influence on the catalytic performance of Ni/CeO2-ZrO2 for low temperature steam reforming of methane[C]. 31st Annual International Pittsburgh Coal Conference, 2014, Pittsburgh, PA, USA.

    15. [15]

      LI T, JING J, FENG J, LI W. Carbon dioxide capture over al-doped cao-based sorbents with enhanced reactive stability in cyclic operations[C] 2015 International Conference on Coal Science and Technology, 2015, Australia.

    16. [16]

      ZHANG Fan, WU Rong, WU Su-fang. The preparation of a type of NiO-CaO Sorption Complex Catalyst by Hydrothermal Precipitation method and its Application in ReSER Process[J]. J Chem Eng Chin Univ, 2014,28(5):985-991.  

    17. [17]

      WU C H, CHANG Y P, CHEN S Y, LIU D M, PEN B L. Characterization and structure evolution of Ca-Al-CO3 hydrotalcite film for high temperature CO2 adsorption[J]. J Nanosci Nanotechnol, 2010,10(7)4716. doi: 10.1166/jnn.2010.1708

    18. [18]

      CHANG P H, CHANG Y P, CHEN S Y, LIU D M, YU C T, PEN B L. Ca-rich Ca-Al-oxide, high-temperature-stable sorbents prepared from hydrotalcite precursors: Synthesis, characterization, and CO2 capture capacity[J]. ChemSusChem, 2011,4(12)1844. doi: 10.1002/cssc.v4.12

    19. [19]

      HUO J, JING J, LI W. Reduction time effect on structure and performance of Ni-Co/MgO catalyst for carbon dioxide reforming of methane[J]. Int J Hydrogen Energy, 2014,39(36):21015-21023. doi: 10.1016/j.ijhydene.2014.10.086

    20. [20]

      SIDIK S M, TRIWAHYONO S, JALIL A A, MAJID Z A, SALAMUN N, BTALIB N, ABDULLAH T A T. CO2 reforming of CH4 over Ni-Co/MSN for syngas production: Role of Co as a binder and optimization using RSM[J]. Chem Eng J, 2016,295:1-10. doi: 10.1016/j.cej.2016.03.041

  • 加载中
    1. [1]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    2. [2]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    3. [3]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    4. [4]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    5. [5]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    8. [8]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    13. [13]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    14. [14]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    15. [15]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    16. [16]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    17. [17]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    20. [20]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

Metrics
  • PDF Downloads(1)
  • Abstract views(1388)
  • HTML views(138)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return